125 research outputs found

    Controllability Metrics, Limitations and Algorithms for Complex Networks

    Full text link
    This paper studies the problem of controlling complex networks, that is, the joint problem of selecting a set of control nodes and of designing a control input to steer a network to a target state. For this problem (i) we propose a metric to quantify the difficulty of the control problem as a function of the required control energy, (ii) we derive bounds based on the system dynamics (network topology and weights) to characterize the tradeoff between the control energy and the number of control nodes, and (iii) we propose an open-loop control strategy with performance guarantees. In our strategy we select control nodes by relying on network partitioning, and we design the control input by leveraging optimal and distributed control techniques. Our findings show several control limitations and properties. For instance, for Schur stable and symmetric networks: (i) if the number of control nodes is constant, then the control energy increases exponentially with the number of network nodes, (ii) if the number of control nodes is a fixed fraction of the network nodes, then certain networks can be controlled with constant energy independently of the network dimension, and (iii) clustered networks may be easier to control because, for sufficiently many control nodes, the control energy depends only on the controllability properties of the clusters and on their coupling strength. We validate our results with examples from power networks, social networks, and epidemics spreading

    Control energy of complex networks towards distinct mixture states

    Get PDF
    Controlling complex networked systems is a real-world puzzle that remains largely unsolved. Despite recent progress in understanding the structural characteristics of network control energy, target state and system dynamics have not been explored. We examine how varying the final state mixture affects the control energy of canonical and conformity-incorporated dynamical systems. We find that the control energy required to drive a network to an identical final state is lower than that required to arrive a non-identical final state. We also demonstrate that it is easier to achieve full control in a conformity-based dynamical network. Finally we determine the optimal control strategy in terms of the network hierarchical structure. Our work offers a realistic understanding of the control energy within the final state mixture and sheds light on controlling complex systems.This work was funded by The National Natural Science Foundation of China (Grant Nos. 61763013, 61703159, 61403421), The Natural Science Foundation of Jiangxi Province (No. 20171BAB212017), The Measurement and Control of Aircraft at Sea Laboratory (No. FOM2016OF010), and China Scholarship Council (201708360048). The Boston University Center for Polymer Studies is supported by NSF Grants PHY-1505000, CMMI-1125290, and CHE-1213217, and by DTRA Grant HDTRA1-14-1-0017. (61763013 - National Natural Science Foundation of China; 61703159 - National Natural Science Foundation of China; 61403421 - National Natural Science Foundation of China; 20171BAB212017 - Natural Science Foundation of Jiangxi Province; FOM2016OF010 - Measurement and Control of Aircraft at Sea Laboratory; 201708360048 - China Scholarship Council; PHY-1505000 - NSF; CMMI-1125290 - NSF; CHE-1213217 - NSF; HDTRA1-14-1-0017 - DTRA)Published versio

    Controllability and Fraction of Leaders in Infinite Network

    Full text link
    In this paper, we study controllability of a network of linear single-integrator agents when the network size goes to infinity. We first investigate the effect of increasing size by injecting an input at every node and requiring that network controllability Gramian remain well-conditioned with the increasing dimension. We provide theoretical justification to the intuition that high degree nodes pose a challenge to network controllability. In particular, the controllability Gramian for the networks with bounded maximum degrees is shown to remain well-conditioned even as the network size goes to infinity. In the canonical cases of star, chain and ring networks, we also provide closed-form expressions which bound the condition number of the controllability Gramian in terms of the network size. We next consider the effect of the choice and number of leader nodes by actuating only a subset of nodes and considering the least eigenvalue of the Gramian as the network size increases. Accordingly, while a directed star topology can never be made controllable for all sizes by injecting an input just at a fraction f<1f<1 of nodes; for path or cycle networks, the designer can actuate a non-zero fraction of nodes and spread them throughout the network in such way that the least eigenvalue of the Gramians remain bounded away from zero with the increasing size. The results offer interesting insights on the challenges of control in large networks and with high-degree nodes.Comment: 6 pages, 3 figures, to appear in 2014 IEEE CD
    • …
    corecore