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Control energy of complex 
networks towards distinct  
mixture states
Sen Nie1,2, H. Eugene Stanley2, Shi-Ming Chen1, Bing-Hong Wang3 & Xu-Wen Wang  1

Controlling complex networked systems is a real-world puzzle that remains largely unsolved. Despite 
recent progress in understanding the structural characteristics of network control energy, target state 
and system dynamics have not been explored. We examine how varying the final state mixture affects 
the control energy of canonical and conformity-incorporated dynamical systems. We find that the 
control energy required to drive a network to an identical final state is lower than that required to arrive 
a non-identical final state. We also demonstrate that it is easier to achieve full control in a conformity-
based dynamical network. Finally we determine the optimal control strategy in terms of the network 
hierarchical structure. Our work offers a realistic understanding of the control energy within the final 
state mixture and sheds light on controlling complex systems.

Because it can accurately characterize such real-world systems as social networks1–3, biological networks4–7, tech-
nical networks8,9, and financial networks10–13, network science has been a popular research topic for decades. 
In recent years in particular, various ways of controlling them have been devised14–20, which aims to figure out 
whether external inputs can be used to drive a networked system from an initial state to any desired final state 
within a finite period of time21. Controllability, i.e., the minimum number of inputs (driver nodes) required to 
achieve the full control, has been examined theoretically both from the structural controllability of directed net-
works with random link weights22 and of networks with arbitrary structures and link weights23.

When achieving control, it is expected to minimize the control energy required to steer a system from any 
arbitrary initial state to a desired final state. The control energy relies strongly on the controllability Gramian24–29, 
which includes topological properties, control time, initial and final states, and the number of inputs. It has 
been proved that the time regime and degree correlation can confine the lower and upper bounds of the control 
energy26. When exploring the eigenspace of the controlled system, we find that the eigen-energies can be either 
heterogeneous or homogeneous, depending on how we control the different node fractions27.

Although prior works have focused on the selection of driver nodes that can reduce the control energy30–32, the 
goal when controlling a networked system is usually to steer each node towards an identical state. For example, 
an entire swarm of honeybees can be drawn into the same nest only by a few “shepherding” honeybees33. Because 
synchronization—where all individuals reach a consistent phase—is prevalent in nature34–36, we need to know 
whether it requires more control energy to realize this identical final state than a non-identical mixed final state. 
In addition, nodes tend to tune their states to synchronize with those of their network neighbors. This conformity 
behavior is prevalent in both natural and social systems37,38. Since conformity behavior-based dynamics facilitates 
the controllability of an identical state39, we examine the control energy of such a conformity-based dynamical 
network.

Here, we explore the control energy by examining the number of driver nodes needed to direct the system 
from an initial state to either an identical or non-identical final state. We incorporate conformity dynamics into 
the general model to determine how nodal dynamics affect the control energy. Using simulations of synthetic and 
real networks, we find the relationship between the minimal driver nodes and control energy and determine the 
optimal set of driver nodes for minimizing the control energy.
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Results
Canonical linear model. We use a dynamical system governed by the canonical linear equation (see 
Method) for modeled Erdös-Rényi40 and scale-free41 networks to determine the control energy required to steer 
the system from the initial state xo to the following final state with different mixtures by choosing all of the nodes 
as driver nodes: (i) an identical final state x f

(ID), where the final state of each node xi(tf) is a constant c, (ii) a 
non-identical final state x f

(NI1), where the final state of each node is drawn from the uniform distribution 
∼x t cU( ) (0, )i f , and (iii) a non-identical final state x f

(NI2), where the final state of each node is drawn from the 
uniform distribution ∼t cx U( ) (0, 3 )i f . This setup guarantees the fairness of comparison between x f

(ID) and 
x f

(NI2) because their norms are the same.
Figure 1(a) shows there are no prominent differences among the control energies of the identical mode EID 

and the two non-identical modes ENI1 and ENI2 for small c, i.e., the final state is not far from the initial state. 
However, this energy gap expands with parameter c, indicating that it is easier to direct the networked system to 
an identical final state than to non-identical ones if the control distance is greater (see Fig. 1(a)).

For a specific final state mode, i.e., c = 3, the control energy E is linearly dependent on network size N, regard-
less of whether x f

(ID), x f
(NI1) or x f

(NI2) is considered. Although we expect that the control energy in networks with 
different link densities (as in the random networks) and with different power exponents (as in the scale-free net-
works) to differ, after all, the controllability Gramian matrix ∫=G t BB t( ) e e dt At A t

f 0
Tf T

 includes the term of the 
coupling matrix A (see Method), but the control energy E for an identical final state mode is virtually independent 
with the average degree and power exponent (see inset of Fig. 1(b,c)). Figure 1(d) in particular shows that a slight 

Figure 1. Control energy for undirected networks with identical (Id) and non-identical (Non-Id) final state 
modes. (a) Control energy E as a function of distance c in directing the random network to distinct final state 
modes. Network size N = 200 and the average degree k = 5. (b) Control energy E as a function of network sizes 
N in directing the random network to distinct final state modes. Inset: Control energy as a function of average 
degrees k in directing the random network to the identical final state (c = 3). (c) Control energy E as a function 
of distance c in directing the scale-free network to distinct final state modes (γ = 2.5, k = 5). Inset: Control 
energy as a function of power exponents γ in directing the scale-free network to the identical final state (k = 5, 
c = 3). (d) Control energy E as a function of the number of driver nodes Nd in directing the random network to 
the identical final state (c = 1). The link weights of all networks are uniformly drawn from U(0, 1). The error bars 
represent standard deviations and each data point is an average over 100 independent realizations.
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increase in the number of inputs dramatically reduces the control energy needed to reach an identical final state. 
Thus network size is the significant contributor to the control energy of a networked system achieving identical 
mode and not the average degree or the power exponent. We also examine the control energies EID, ENI1 and ENI2 
for directed random networks, and generally find that ENI2 is higher than EID, whereas ENI1 is lower than EID (see 
Fig. 2(a)).

To systematically examine the energy gap between final states with different mixtures, we compare 
ΔE1 ≡ ENI1 − EID and ΔE2 ≡ ENI2 − EID on the N−c plane. Figure 3(a,b) show the results in undirected networks. 
Note that (i) ENI1  < EID for small network size N and short distance c, and (ii) >E ENI1 ID as N and c exceed the 
critical values. Figure 3(c,d) show the results in directed networks, in which we find that ENI1 < EID for all combi-
nations of N and c in directed networks, and that ENI2 is always higher than EID in both undirected and directed 
networks.

To heuristically explain why EID is generally smaller than ENI, we examine a simple networked system with two 
nodes and assume the inverse of the Gramian matrix G−1(tf) to be

=











.−G t

g g
g g( )

(1)
1
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11 12

21 22

Note that in undirected networks g12 = g21. We denote the final state of non-identical modes as = x xx [ , ]f
(NI)

f1 f2
T, 

and the final state of identical mode to be = c cx [ , ]f
(ID) T. Because the final state of non-identical mode is drawn from 

uniform distribution U(0, c), we assume xf1 < xf2 = c (Note that this can be extended to the case >x xf1 f2). The con-
trol energy E required to direct a networked system from an initial state to a final state is (see Method for details)

E t G tx x( ) ( ) (2)f f
T 1
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Substituting the final states into Eq. (2), we obtain the control energies ENI and EID

= + + +

= + + + .

E x g x g x x g x x g

E c g c g c g c g

,

(3)

NI f1
2

11 f2
2

22 f1 f2 21 f1 f2 12

ID
2

11
2

22
2

21
2

12

The energy gap between two modes is

Δ = − + − + .E x c g x c c g g( ) ( )( ) (4)f1
2 2

11 f1
2

21 12

Equation. (4) indicates that ΔE is supported by two terms, one determined by node 1—which is reasonable 
because the final state of node 2 is the same for two modes— and a second that is the coupling effect between node 
1 and node 2. From Eq. (4) we conclude:

(i) That g21 = g12 = 0, i.e., there is no association between nodes 1 and 2. For any >c 0, Eq. (4) yields ΔE < 0, 
indicating that it is easier to control this system towards a non-identical final state than an identical one.

(ii) That g21 < 0 ∧ g12 < 0. Thus the sign of Eq. (4) is simultaneously determined by an isolated effect (the first 
term) and a coupling effect (the second term). To guarantee Δ >E 0, we derive
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Figure 2. Control energy for directed random networks with identical (Id) and non-identical (Non-Id) final 
state modes. (a) Control energy E as a function of distance c. Network size N = 200 and average degree k = 5. (b) 
Control energy E as a function of network size N (c = 3). The error bars represent standard deviations and each 
data point is an average over 100 independent realizations.
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A simple example is an undirected chain with two nodes in which the adjacency matrix elements are 
a12 = a21 = 1 and a11 = a22 = −1.25 (see Method for details). For simplicity, we set c = 1 and simplify Eq. (5) to be 
xf1 < 0.6. Selecting xf1 = 0.5 and substituting these parameters into Eq. (4), we obtain ΔE = 0.125. Although it is 
nearly impossible to define the condition of ΔE in networks with complicated topological structures, the compe-
tition between two kinds of term allows us to conclude that >E ENI ID (Δ >E 0).

To verify that these synthetic network findings occur in real-world systems, we investigate the control energy 
required to drive an undirected network (the Zachary Karate Club) and a directed network (the Seagrass Food 
Web) towards non-identical and identical final states in Fig. 4. Although the results are consistent with those in 
modeled networks, the energy gap ΔE is narrower.

Conformity-based model. We now examine a more complicated and realistic model that can capture the 
dynamics among individuals as they achieve a globally identical final state. We incorporate conformity behavior, 
i.e., each node tends to follow the state predominating in its neighborhood. Thus the state of individual i at time 
t + 1 is

x t x t k( 1) ( )/ ,
(6)

i
j

k

j i
1

i

∑+ =
=

where xj(t) is the state of node i’s neighbor j at time t and = ∑ =k Ai j
N

ij1  is the degree of node i. Equation (6) indi-
cates that an individual’s state at the next time step t + 1 is the average state of its neighbors at the current step t. 
We extend Eq. (6) to the networked system, and the dynamics of the conformity behavior of N nodes are

+ = +−t K A t B tx x u( 1) ( ) ( ), (7)1
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Figure 3. Energy gap between the non-identical and identical final state modes for random networks.  
(a) Energy gap ΔE1 ≡ ENI1 − EID as functions of network size N and distance c for undirected random networks. 
(b) Energy gap ΔE2 ≡ ENI2 − EID as functions of network size N and distance c for undirected random networks. 
(c) Energy gap ΔE1 as functions of network size N and distance c for directed random networks. (d) Energy gap 
ΔE2 as functions of network size N and distance c for directed random networks. The average degree k = 5. Each 
data point is an average over 100 independent realizations.
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where K−1 is the diagonal matrix of the inverse of the node degrees that captures the overall conformity behavior. 
The system described by Eq. (7) remains linear. Though the controllability framework of the discrete-time system 
is similar to that in a continuous-time system42, the final time tf should be larger than or equal to N − 1 to guaran-
tee the controllability Gramian matrix of discrete-time system is invertible (we choose tf → ∞). Note that control 
energy E is simultaneously determined by the matrix K−1 and the coupling matrix A of the system, which allows 
the control energy to differ from that when conformity is absent.

Figure 5 shows the control energy E required for a conformity-based dynamical system to achieve an identical 
final state. We find that conformity behavior facilitates the control energy of random networks towards identical 
final states. Because conformity is strongly encouraged in dense networks, the required control energy E is lower 
in networks with a larger average degree or in networks that are heterogeneous.

Optimal control strategy. To determine the optimal driver nodes set for minimizing the control energy, 
we note that the control energy E decays as the length of the longest path from external inputs becomes shorter30. 

0 1 2 3 4 5
0

 0.5

  1.0

  1.5

0 1 2 3 4 5
0

    1

    2

    3

    4

     5
)b()a(

Figure 4. Control energy of directing the real networks to identical (Id) and non-identical (Non-Id) final 
state modes. Control energy E as a function of distance c for (a) Zachary karate club network and (b) Seagrass 
food web network. The error bars represent standard deviations and each data point is an average over 100 
independent realizations.
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Figure 5. Control energy of directing the undirected random network with conformity dynamics to identical 
final state. Control energy E as a function of distance c for (a) random networks and (b) scale-free networks. 
Average degree k = 5 and network size N = 200. Since the control energy for scale-free network without 
conformity is the same as that for the random network shown in (a), it is not presented in (b). The error bars 
represent standard deviations and each data point is an average over 100 independent realizations.
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To achieve an identical final state, we use a multi-chain network and compare the control energy of different 
selection strategies applied to the driver nodes set.

Figure 6(a) shows a chain-like network (with 10 nodes in each subchain) with N = 181 nodes in which the 
first node of each chain shares the same ancestor. We compare the control energy E by using three strategies to 
select a fraction of f = 0.5 nodes as driver nodes, (i) a randomly-distributed set in which the driver nodes are cho-
sen randomly, (ii) an equally-distributed set in which the driver nodes are distributed equally in order to divide 
the chains into equal segments in a hierarchical structure (see Fig. 6(b)) and (iii) an exactly equal set in which 
the driver nodes can divide the chains into exactly equal segments in a hierarchical structure (see (Fig. 6(c)). 
Figure 6(d) shows that the exactly equal set can lead to the minimum control energy, and E exponentially grows 
with the control distance c. Thus the key driver nodes for the optimal control are those in a topological position 
that equally divides the hierarchical structure.

Discussion
We have combined conformity-based dynamics and complex networks to determine the control energy required 
to direct a network towards non-identical and identical final states, respectively. In undirected networks, although 
there is a longer distance between the identical final state and its initial state, the control energy is less than that 
required to reach a non-identical final state. The critical factor in the role of control energy is the network size, 
not the network topology. Thus the degree distribution does not significantly affect the level of control energy 
required to reach an identical final state in either undirected random or scale-free networks. We examine the 
role of conformity dynamics in directing networks towards an identical final state and find that when there is 
conformity the control energy is reduced. Using a multi-chain, we find that the driver nodes corresponding to the 
optimal control strategy are those that divide the hierarchical structure equally.

Our results indicate a possible connection between network control and the mixture of the desired final state. 
This could shed light on how nodal dynamics and the desired final state affect the control of a complex networked 
system. We also present an optimal control strategy for energy reduction that suggests a possible direction for 
future research.

Methods
The dynamics of an N-dimensional linear time-invariant is governed by:

= +


t A t B tx x u( ) ( ) ( ), (8)

where x(t) = [x1(t), x2(t), ..., xN(t)]T is the state of the system at time t, u(t) = [u1(t), u2(t), ..., uM(t)]T is the external 
control inputs, and A is the adjacency matrix that captures the interaction strength between nodes. B is the con-
trol matrix that specifies how the inputs are connected to network nodes. Here B is a diagonal unit matrix since 
all nodes are chosen as driver nodes. A dynamical networked system described by Eq. (8) is controllable if a finite 
number of inputs can steer it from any initial state to any final state within a finite period of time. The driver nodes 
are the set of nodes driven by external inputs. Given an input u(t), the corresponding control energy is 

∫ τ τ= || ||E t u( ) ( ) dt

0
2 . Using classical control theory21, from the initial state xo at time t = 0, the minimal energy 

required to drive the system to any final state xf at time t = tf is

= −E t G tx x( ) ( ) , (9)f f
T 1

f f
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Figure 6. Optimal selection of driver nodes with lower control energy. (a) A simple network consisting of 10 
chains, and each chain has 18 nodes. (b) Equally distributed control strategy. The driver nodes set consists of 3 
parts and each part includes 30 driver nodes. (c) Exactly equal control strategy. The driver nodes set consists of 9 
parts and each part includes 10 driver nodes. The driver nodes in panels (b) and (c) are all marked by yellow.  
(d) Control energy E as a function of distance c in directing the multi-chain network in three control strategies. 
The error bars represent standard deviations and each data point is an average over 100 independent realizations.
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where ∫=G t BB t( ) e e dt At A t
f 0

Tf T
 is the symmetric controllability Gramian matrix. Because the control energy 

decays quickly when the control time tf increases, we set tf → ∞ and focus on the control energy E ≡ E(tf → ∞)27. 
Here xo and xf are two vectors with N rows for each denoting the initial and final states, respectively. Eq. (9) indi-
cates that the energy E(t) is determined by both the input signals and the nature of the final state. Prior research 
has investigated the non-identical final state (NI), but we focus on the minimal energy required to control the 
system to achieve an identical final state (ID). Here we compare the distinct mixture modes of final state, (i) an 
identical final state x f

(ID), where the state of each node xi(tf) is a constant c, (ii) a non-identical final state x f
(NI1), 

where the state of each node is drawn from the uniform distribution ∼x t cU( ) (0, )i f , and (iii) a non-identical 
final state xf

(NI2), where the final state follows the uniform distribution ∼x t cU( ) (0, 3 )i f . Note that we use the 
constant c to adjust the distance between the initial state xo and the final state xf. Following the common conven-
tion, we add a self-loop δ= − + ∑ =A A( )ii j

N
ij1  to each node27, where δ = 0.25 is a small perturbation that guar-

antees the stability of the system by which the eigenvalues of the adjacency matrix A are all negative. The discrete 
system may be unstable as δ = 0.25, while we can guarantee it is stable by increasing δ.
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