129,076 research outputs found

    LD: Identifying Misbehaving Nodes in MANET

    Get PDF
    A mobile ad-hoc network is a collection of mobile nodes connected together over a wireless medium without any fixed infrastructure. Unique characteristics of mobile ad-hoc networks such as open peer-to-peer network architecture, shared wireless medium and highly dynamic topology, pose various challenges to the security design. Mobile ad-hoc networks lack central administration or control, making them very vulnerable to attacks or disruption by faulty nodes in the absence of any security mechanisms. Also, the wireless channel in a mobile ad-hoc network is accessible to both legitimate network users and malicious attackers. So, the task of finding good solutions for these challenges plays a critical role in achieving the eventual success of mobile ad-hoc networks. However, the open medium and wide distribution of nodes make MANET vulnerable to malicious attackers. In this case, it is crucial to develop efficient intrusion-detection mechanisms to protect MANET from attacks. Secure routing protocols and mechanisms to detect routing misbehavior in the direct neighborhood exist; however, collusion of misbehaving nodes has not been adequately addressed yet. We present LeakDetector, a mechanism to detect colluding malicious nodes in wireless multihop networks A mobile ad-hoc network is a collection of mobile nodes connected together over a wireless medium without any fixed infrastructure. Unique characteristics of mobile ad-hoc networks such as open peer-to-peer network architecture, shared wireless medium and highly dynamic topology, pose various challenges to the security design. Mobile ad-hoc networks lack central administration or control, making them very vulnerable to attacks or disruption by faulty nodes in the absence of any security mechanisms. Also, the wireless channel in a mobile ad-hoc network is accessible to both legitimate network users and malicious attackers. So, the task of finding good solutions for these challenges plays a critical role in achieving the eventual success of mobile ad-hoc networks. However,the. LeakDetector enables the calculation of the packet-loss ratio for the individual nodes

    Systems Methodology and Framework for Problem Definition in Mobile Ad Hoc Networks

    Get PDF
    Mobile Ad Hoc Networks are communication networks built up of a collection of mobile devices which can communicate through wireless connections. Mobile Ad Hoc Networks have many challenges such as routing, which is the task of directing data packets from a source node to a given destination. This task is particularly hard in Mobile Ad Hoc Networks: due to the mobility of the network elements and the lack of central control, robustness and adaptability in routing algorithms and work in a decentralized and self organizing way. Through the principles of systems architecting and Engineering; the problem statement in Mobile Ad Hoc Networks could be defined more specifically and accurately. The uncertainties and techniques for mitigating and even taking positive advantages of them can be achieved through a framework of uncertainties as in [1]. The systems methodology framework called Total Systems Intervention (TSI) described by Flood and Jackson [2] select a systems methodology for Mobile Ad Hoc Networks. The purpose of this paper is to show how TSI when integrated with a framework created to understand the risks and opportunities can help develop strategies to minimize the risks and to take advantage of the opportunities for facing challenges in Mobile Ad Hoc Networks

    Voice Service Support in Mobile Ad Hoc Networks

    Full text link
    Mobile ad hoc networks are expected to support voice traffic. The requirement for small delay and jitter of voice traffic poses a significant challenge for medium access control (MAC) in such networks. User mobility makes it more complex due to the associated dynamic path attenuation. In this paper, a MAC scheme for mobile ad hoc networks supporting voice traffic is proposed. With the aid of a low-power probe prior to DATA transmissions, resource reservation is achieved in a distributed manner, thus leading to small delay and jitter. The proposed scheme can automatically adapt to dynamic path attenuation in a mobile environment. Simulation results demonstrate the effectiveness of the proposed scheme.Comment: To appear in the Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC, November 26 - 30, 200

    Mobile Ad-Hoc Networks

    Get PDF
    Ad-hoc networks are a key in the evolution of wireless networks. Ad-hoc networks are typically composed of equal nodes, which communicate over wireless links without any central control. Ad-hoc wireless networks inherit the traditional problems of wireless and mobile communications, such as bandwidth optimisation, power control and transmission quality enhancement. In addition, the multi-hop nature and the lack of fixed infrastructure brings new research problems such as configuration advertising, discovery and maintenance, as well as ad-hoc addressing and self-routing. Many different approaches and protocols have been proposed and there are even multiple standardization efforts within the Internet Engineering Task Force, as well as academic and industrial projects. This chapter focuses on the state of the art in mobile ad-hoc networks. It highlights some of the emerging technologies, protocols, and approaches (at different layers) for realizing network services for users on the move in areas with possibly no pre-existing communications infrastructure

    Data Confidentiality in Mobile Ad hoc Networks

    Full text link
    Mobile ad hoc networks (MANETs) are self-configuring infrastructure-less networks comprised of mobile nodes that communicate over wireless links without any central control on a peer-to-peer basis. These individual nodes act as routers to forward both their own data and also their neighbours' data by sending and receiving packets to and from other nodes in the network. The relatively easy configuration and the quick deployment make ad hoc networks suitable the emergency situations (such as human or natural disasters) and for military units in enemy territory. Securing data dissemination between these nodes in such networks, however, is a very challenging task. Exposing such information to anyone else other than the intended nodes could cause a privacy and confidentiality breach, particularly in military scenarios. In this paper we present a novel framework to enhance the privacy and data confidentiality in mobile ad hoc networks by attaching the originator policies to the messages as they are sent between nodes. We evaluate our framework using the Network Simulator (NS-2) to check whether the privacy and confidentiality of the originator are met. For this we implemented the Policy Enforcement Points (PEPs), as NS-2 agents that manage and enforce the policies attached to packets at every node in the MANET.Comment: 12 page

    A Review of Improvement in TCP congestion Control Using Route Failure Detection in MANET

    Get PDF
    A mobile ad-hoc network is an autonomous collection of mobile devices that communicate with each other over wireless links and cooperate in a distributed manner in order to provide the necessary network functionality in the absence of a fixed infrastructure. This type of network, operating as a stand-alone network or with one or multiple points of attachment to cellular networks or the Internet, paves the way for numerous new and exciting applications. Route failure is very frequent in mobile ad hoc networks as the nodes are mobile and is a very serious issue also which needs to be addressed. This paper provides an insight into the TCP congestion control mechanism in mobile ad hoc networks (MANET) and discusses the recently proposed route failure detection schemes. All these algorithms tend to increase the network performance in terms of parameters like throughput, packet delivery ratio, end-to-end delay, route reestablishment delay etc. Keywords: ad hoc network, route failure, congestion, throughpu
    • …
    corecore