33,034 research outputs found

    The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation

    Get PDF
    <b>Objective:</b> To investigate changes in human atrial single cell functional electrophysiological properties associated with chronic atrial fibrillation (AF), and the contribution to these of accompanying ion current changes. <b>Methods:</b> The whole cell patch clamp technique was used to record action potentials, the effective refractory period (ERP) and ion currents, in the absence and presence of drugs, in enzymatically isolated myocytes from 11 patients with chronic (<6 months) AF and 39 patients in sinus rhythm. <b>Results:</b> Stimulation at high rates (up to 600 beats/min) markedly shortened late repolarisation and the ERP in cells from patients in sinus rhythm, and depolarised the maximum diastolic potential (MDP). Chronic AF was associated with a reduction in the ERP at physiological rate (from 203±16 to 104±15 ms, P<0.05), and marked attenuation in rate effects on the ERP and repolarisation. The abbreviated terminal phase of repolarisation prevented fast rate-induced depolarisation of the MDP in cells from patients with AF. The density of L-type Ca<sup>2+</sup> (<i>I</i><sub>CaL</sub>) and transient outward K<sup>+</sup> (<i>I</i><sub>TO</sub>) currents was significantly reduced in cells from patients with AF (by 60–65%), whilst the inward rectifier K<sup>+</sup> current (IK1) was increased, and the sustained outward current (<i>I</i><sub>KSUS</sub>) was unaltered. Superfusion of cells from patients in sinus rhythm with nifedipine (10 micromol/l) moderately shortened repolarisation, but had no effect on the ERP (228±12 vs. 225±11 ms). 4-Aminopyridine (2 mmol/l) markedly prolonged repolarisation and the ERP (by 35%, P<0.05). However, the combination of these drugs had no effect on late repolarisation or refractoriness. <b>Conclusion:</b> Chronic AF in humans is associated with attenuation in adaptation of the atrial single cell ERP and MDP to fast rates, which may not be explained fully by accompanying changes in <i>I</i><sub>CaL</sub> and <i>I</i><sub>TO</sub>

    Altered excitation-contraction coupling in human chronic atrial fibrillation

    Get PDF
    This review focuses on the (mal)adaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca<sup>2+</sup> transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases underlying these changes. Understanding the molecular mechanisms of excitation-contraction-coupling remodeling in the fibrillating human atria is important to identify new potential targets for AF therapy

    Systematic Analysis of Gene Expression Differences between Left and Right Atria in Different Mouse Strains and in Human Atrial Tissue

    Get PDF
    Background: Normal development of the atria requires left-right differentiation during embryonic development. Reduced expression of Pitx2c (paired-like homeodomain transcription factor 2, isoform c), a key regulator of left-right asymmetry, has recently been linked to atrial fibrillation. We therefore systematically studied the molecular composition of left and right atrial tissue in adult murine and human atria. Methods: We compared left and right atrial gene expression in healthy, adult mice of different strains and ages by employing whole genome array analyses on freshly frozen atrial tissue. Selected genes with enriched expression in either atrium were validated by RT-qPCR and Western blot in further animals and in shock-frozen left and right atrial appendages of patients undergoing open heart surgery. Results: We identified 77 genes with preferential expression in one atrium that were common in all strains and age groups analysed. Independent of strain and age, Pitx2c was the gene with the highest enrichment in left atrium, while Bmp10, a member of the TGFb family, showed highest enrichment in right atrium. These differences were validated by RT-qPCR in murine and human tissue. Western blot showed a 2-fold left-right concentration gradient in PITX2 protein in adult human atria. Several of the genes and gene groups enriched in left atria have a known biological role for maintenance of healthy physiology, specifically the prevention of atrial pathologies involved in atrial fibrillation, including membrane electrophysiology, metabolic cellular function, and regulation of inflammatory processes. Comparison of the array datasets with published array analyses in heterozygous Pitx2c+/2 atria suggested that approximately half of the genes with left-sided enrichment are regulated by Pitx2c. Conclusions: Our study reveals systematic differences between left and right atrial gene expression and supports the hypothesis that Pitx2c has a functional role in maintaining ‘‘leftness’’ in the atrium in adult murine and human hearts

    Electrophysiological and arrhythmogenic effects of 5-hydroxytryptamine on human atrial cells are reduced in atrial fibrillation

    Get PDF
    5-Hydroxytryptamine (5-HT) is proarrhythmic in atrial cells from patients in sinus rhythm (SR) via activation of 5-HT<sub>4</sub> receptors, but its effects in atrial cells from patients with atrial fibrillation (AF) are unknown. The whole-cell perforated patch-clamp technique was used to record L-type Ca<sup>2+</sup> current (<i>I</i><sub>CaL</sub>), action potential duration (APD) and arrhythmic activity at 37 °C in enzymatically isolated atrial cells obtained from patients undergoing cardiac surgery, in SR or with chronic AF. In the AF group, 5-HT (10 μM) produced an increase in <i>I</i><sub>CaL</sub> of 115 ± 21% above control (<i>n</i> = 10 cells, 6 patients) that was significantly smaller than that in the SR group (232 ± 33%; <i>p</i> 0.05; <i>n</i> = 27 cells, 12 patients). Subsequent co-application of isoproterenol (1 μM) caused a further increase in <i>I</i><sub>CaL</sub> in the AF group (by 256 ± 94%) that was greater than that in the SR group (22 ± 6%; p < 0.05). The APD at 50% repolarisation (APD<sub>50</sub>) was prolonged by 14 ± 3 ms by 5-HT in the AF group (<i>n</i> = 37 cells, 14 patients). This was less than that in the SR group (27 ± 4 ms; <i>p</i> < 0.05; <i>n</i> = 58 cells, 24 patients). Arrhythmic activity in response to 5-HT was observed in 22% of cells in the SR group, but none was observed in the AF group (p < 0.05). Atrial fibrillation was associated with reduced effects of 5-HT, but not of isoproterenol, on <i>I</i><sub>CaL</sub> in human atrial cells. This reduced effect on <i>I</i><sub>CaL</sub> was associated with a reduced APD<sub>50</sub> and arrhythmic activity with 5-HT. Thus, the potentially arrhythmogenic influence of 5-HT may be suppressed in AF-remodelled human atrium

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Atrial fibrillation and electrophysiology in transgenic mice with cardiac-restricted overexpression of FKBP12

    Get PDF
    Cardiomyocyte-restricted overexpression of FK506-binding protein 12 transgenic (αMyHC-FKBP12) mice develop spontaneous atrial fibrillation (AF). The aim of the present study is to explore the mechanisms underlying the occurrence of AF in αMyHC-FKBP12 mice. Spontaneous AF was documented by telemetry in vivo and Langendorff-perfused hearts of αMyHC-FKBP12 and littermate control mice in vitro. Atrial conduction velocity was evaluated by optical mapping. The patch-clamp technique was applied to determine the potentially altered electrophysiology in atrial myocytes. Channel protein expression levels were evaluated by Western blot analyses. Spontaneous AF was recorded in four of seven αMyHC-FKBP12 mice but in none of eight nontransgenic (NTG) controls. Atrial conduction velocity was significantly reduced in αMyHC-FKBP12 hearts compared with NTG hearts. Interestingly, the mean action potential duration at 50% but not 90% was significantly prolonged in αMyHC-FKBP12 atrial myocytes compared with their NTG counterparts. Consistent with decreased conduction velocity, average peak Na+ current ( INa) density was dramatically reduced and the INa inactivation curve was shifted by approximately +7 mV in αMyHC-FKBP12 atrial myocytes, whereas the activation and recovery curves were unaltered. The Nav1.5 expression level was significantly reduced in αMyHC-FKBP12 atria. Furthermore, we found increases in atrial Cav1.2 protein levels and peak L-type Ca2+ current density and increased levels of fibrosis in αMyHC-FKBP12 atria. In summary, cardiomyocyte-restricted overexpression of FKBP12 reduces the atrial Nav1.5 expression level and mean peak INa, which is associated with increased peak L-type Ca2+ current and interstitial fibrosis in atria. The combined electrophysiological and structural changes facilitated the development of local conduction block and altered action potential duration and spontaneous AF. NEW & NOTEWORTHY This study addresses a long-standing riddle regarding the role of FK506-binding protein 12 in cardiac physiology. The work provides further evidence that FK506-binding protein 12 is a critical component for regulating voltage-gated sodium current and in so doing has an important role in arrhythmogenic physiology, such as atrial fibrillation

    The burden of proof: the current state of atrial fibrillation prevention and treatment trials

    Get PDF
    Atrial fibrillation (AF) is an age-related arrhythmia of enormous socioeconomic significance. In recent years, our understanding of the basic mechanisms that initiate and perpetuate AF has evolved rapidly, catheter ablation of AF has progressed from concept to reality, and recent studies suggest lifestyle modification may help prevent AF recurrence. Emerging developments in genetics, imaging, and informatics also present new opportunities for personalized care. However, considerable challenges remain. These include a paucity of studies examining AF prevention, modest efficacy of existing antiarrhythmic therapies, diverse ablation technologies and practice, and limited evidence to guide management of high-risk patients with multiple comorbidities. Studies examining the long-term effects of AF catheter ablation on morbidity and mortality outcomes are not yet completed. In many ways, further progress in the field is heavily contingent on the feasibility, capacity, and efficiency of clinical trials to incorporate the rapidly evolving knowledge base and to provide substantive evidence for novel AF therapeutic strategies. This review outlines the current state of AF prevention and treatment trials, including the foreseeable challenges, as discussed by a unique forum of clinical trialists, scientists, and regulatory representatives in a session endorsed by the Heart Rhythm Society at the 12th Global CardioVascular Clinical Trialists Forum in Washington, DC, December 3–5, 2015

    Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade

    Get PDF
    Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K+ currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K+ currents (ITO, IKSUS and IK1) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in ITO density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. IK1 was reduced by 34% at −120 mV (p < 0.05). Neither IKSUS, nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of ITO- and IK1-decrease could result in a 28% increase in APD90. Chronic β-blockade did not alter mRNA or protein expression of the ITO pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in IK1. A reduction in atrial ITO and IK1 associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits

    Frequency Analysis of Atrial Fibrillation From the Surface Electrocardiogram

    Get PDF
    Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice. Neither the natural history of AF nor its response to therapy are sufficiently predictable by clinical and echocardiographic parameters. Atrial fibrillatory frequency (or rate) can reliably be assessed from the surface electrocardiogram (ECG) using digital signal processing (filtering, subtraction of averaged QRST complexes, and power spectral analysis) and shows large inter-individual variability. This measurement correlates well with intraatrial cycle length, a parameter which appears to have primary importance in AF domestication and response to therapy. AF with a low fibrillatory rate is more likely to terminate spontaneously, and responds better to antiarrhythmic drugs or cardioversion while high rate AF is more often persistent and refractory to therapy. In conclusion, frequency analysis of AF seems to be useful for non-invasive assessment of electrical remodeling in AF and may subsequently be helpful for guiding AF therapy
    corecore