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This paper is concerned with anticontrol of chaos for a class of delay difference equations via the feedback control technique. The
controlled system is first reformulated into a high-dimensional discrete dynamical system. Then, a chaotification theorem based
on the heteroclinic cycles connecting repellers for maps is established.The controlled system is proved to be chaotic in the sense of
both Devaney and Li-Yorke. An illustrative example is provided with computer simulations.

1. Introduction

Anticontrol of chaos (or called chaotification) is a process
thatmakes a nonchaotic system chaotic or enhances a chaotic
system to produce a stronger or different type of chaos. In
recent years, it has been found that chaos can actually be use-
ful under some circumstances, for example, in human brain
analysis [1, 2], heartbeat regulation [3, 4], encryption [5], dig-
ital communications [6], and so forth. So, sometimes it is
useful and even important to make a system chaotic or create
new types of chaos. This has attracted increasing interest in
research on chaotification of dynamical systems due to the
great potential of chaos in many nontraditional applications.

In the pursuit of chaotifying discrete dynamical systems,
a simple yet mathematically rigorous chaotification method
was first developed by Chen and Lai [7–9] from a feedback
control approach. After that, many chaotification schemes
appeared for discrete dynamical systems based on the feed-
back control approach.The reader is referred to Chen and Shi
[10] and Wang and Chen [11] for a survey of chaotification of
discrete dynamical systems, as well as some references cited
therein.

It is well known that the time delay appears in many real-
istic systems with feedback in science and engineering.
Meanwhile, it has been shown that introducing delays to an
undelayed system can be beneficial, especially for chaotic
systems. This is the delayed feedback control method, which
is widely used in chaos control. For continuous-time control

systems, we refer to [12] and the references therein. In [12],
the authors developed a unified computational approach for
solving optimal state-delay control problems and proved that
the approach was very effective for parameter identification
and delayed feedback control. For discrete-time control sys-
tems, we refer to [13] and the references therein. In [13], the
authors obtained the necessary and sufficient conditions for
stabilizability of discrete-time systems via delayed feedback
control.

To the best of our knowledge, there are few results on
chaotification of delay difference equations. Motivated by the
delayed feedback control method, we studied the chaotifica-
tion problem for a class of delay difference equations with at
least two fixed points. Since the sawtooth function and the
sine function have some favourable properties, some ofwhich
are similar, they are often used as controllers; see [10, 11, 14–
16] and so forth. Particularly, we succeeded in using the sine
function as a controller to chaotify linear delay difference
equations in [16]. This motivates us to use the sine function
as the controller and employ a feedback control approach to
study the chaotification problem for a class of delay difference
equations. It is proved that the controlled system is chaotic
in the sense of both Devaney and Li-Yorke, by applying the
result of heteroclinic cycles connecting repellers; see [17] for
the result and some references therein.

The rest of the paper is organized as follows. In Section 2,
the chaotification problem under investigation is described,
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and some concepts, lemmas, and reformulation of the con-
trolled system are introduced. In Section 3, the chaotification
problem is studied and a chaotification scheme is established.
An example is provided to illustrate the theoretical result
with computer simulations in Section 4. Finally, Section 5
concludes the paper.

2. Preliminaries

In this section, we describe the chaotification problem, give a
reformulation of the delay difference equation, and introduce
some fundamental concepts and lemmas, which will be used
in the next section.

2.1. Description of Chaotification Problem. In this paper, we
consider chaotification of the following delay difference equa-
tion:

𝑥 (𝑛 + 1) = 𝑓 (𝑥 (𝑛 − 𝑘) , 𝑥 (𝑛)) , 𝑛 ≥ 0, (1)

where 𝑘 ≥ 1 is a fixed integer and 𝑓 : 𝐷 ⊂ R2 → R is a map.
Equation (1) can be viewed as a discrete analogue of many
one-dimensional delay differential equations by using the for-
ward Euler scheme, such as the well-known Mackey-Glass
equation

�̇� (𝑡) = −𝜇𝑥 (𝑡) + 𝑔 (𝑥 (𝑡 − 𝜏)) , (2)

where 𝜇 > 0, 𝜏 > 0 is the delay, and 𝑔 is a one-dimensional
nonlinear function. Equation (2) is a prototype for a retarded
functional differential equation which has many applications
in sciences. Special cases of (2) or its discretization have been
studied by many authors; for instance, see [18–22] and the
references therein.

From the above discussion, we see that the delay differ-
ence equation (1) is indeed very general. There exist many
papers which are concerned with the existence of chaotic
behavior for special forms of functions 𝑓. For example, see
[21, 22] and references therein.However, (1) cannot be chaotic
for a more general class of functions 𝑓. The object of this
paper is to design a simple control input sequence {V(𝑛)} such
that the output of the controlled system

𝑥 (𝑛 + 1) = 𝑓 (𝑥 (𝑛 − 𝑘) , 𝑥 (𝑛)) + V (𝑛) , 𝑛 ≥ 0, (3)

exhibits chaos in the sense of both Devaney and Li-Yorke
for a more general class of functions 𝑓. The controller to be
designed in this paper is in the form of

V (𝑛) = 𝛼 sin (𝛽𝑥 (𝑛 − 𝑘)) , (4)

where 𝛼 and 𝛽 are two undetermined positive parameters.
For convenience, define 𝑔(𝑥, 𝑦) := 𝑓(𝑥, 𝑦) + 𝛼 sin(𝛽𝑥)

throughout the rest of the paper. Let 𝑓
𝑥
(𝑥, 𝑦) and 𝑓

𝑦
(𝑥, 𝑦)

denote the first-order partial derivatives of 𝑓 with respect to
the first and the second variables at the point (𝑥, 𝑦), respec-
tively. In the following, by 𝐵

𝑟
(𝑧) and 𝐵

𝑟
(𝑧) denote the open

and closed balls of radius 𝑟 centered at 𝑧.

2.2. Reformulation. Here, we reformulate (1) and (3) into two
special high-dimensional discrete dynamical systems. The
following transformmethod is used by many researchers; for
example, see [16, 21] and some references therein.

By setting

𝑢
𝑗
(𝑛) := 𝑥 (𝑛 + 𝑗 − 𝑘 − 1) , 1 ≤ 𝑗 ≤ 𝑘 + 1, 𝑛 ≥ 0,

(5)

equation (1) and the controlled system (3) with controller (4)
can be written as the following 𝑘 + 1-dimensional discrete
systems on R𝑘+1:

𝑢 (𝑛 + 1) = 𝐹 (𝑢 (𝑛)) , (6)

𝑢 (𝑛 + 1) = 𝐺 (𝑢 (𝑛)) , (7)

respectively, where 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘+1
)
𝑇
∈ R𝑘+1, and the

maps 𝐹, 𝐺 : R𝑘+1 → R𝑘+1 are given by

𝐹
(

(

𝑢
1
(𝑛)

𝑢
2
(𝑛)

...
𝑢
𝑘
(𝑛)

𝑢
𝑘+1
(𝑛)

)

)

=
(

(

𝑢
2
(𝑛)

𝑢
3
(𝑛)

...
𝑢
𝑘+1
(𝑛)

𝑓 (𝑢
1
(𝑛) , 𝑢

𝑘+1
(𝑛))

)

)

,

𝐺
(

(

𝑢
1
(𝑛)

𝑢
2
(𝑛)

...
𝑢
𝑘
(𝑛)

𝑢
𝑘+1
(𝑛)

)

)

=
(

(

𝑢
2
(𝑛)

𝑢
3
(𝑛)

...
𝑢
𝑘+1
(𝑛)

𝑓 (𝑢
1
(𝑛) , 𝑢

𝑘+1
(𝑛)) + 𝛼 sin (𝛽𝑢

1
(𝑛))

)

)

.

(8)

The map 𝐺 is called the map induced by 𝑔. System (7) is
called the system induced by (3) in the Euclidean space R𝑘+1.
It is evident that a solution {𝑥(𝑛 − 𝑘), . . . , 𝑥(𝑛)}∞

𝑛=1
of (3)

with an initial condition {𝑥(−𝑘), . . . , 𝑥(0)} corresponds to
a solution {𝑢(𝑛)}∞

𝑛=1
of system (7) with an initial condition

𝑢(0) = (𝑢
1
(0), . . . , 𝑢

𝑘+1
(0))
𝑇
∈ R𝑘+1. We say that the solution

{𝑢(𝑛)}
∞

𝑛=1
of system (7) is induced by the solution {𝑥(𝑛 − 𝑘),

. . . , 𝑥(𝑛)}
∞

𝑛=1
of (3). Therefore, we can investigate the dynam-

ical behavior of system (3) by investigating that of its induced
system (7) inR𝑘+1.There is the same conclusion between sys-
tems (6) and (1).The idea in the above definitions ismotivated
by [21], where the authors say that the induced system and the
original system are equivalent.

2.3. Some Basic Concepts and Lemmas. Since Li and Yorke
[23] first introduced a precise mathematical definition of
chaos, there have been several different definitions of chaos,
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some stronger and some weaker, depending on the require-
ments in different problems; see [24–27] and so forth. For
convenience, we list two definitions of chaos in the sense of
Li-Yorke and Devaney, which are used in this paper.

Definition 1. Let (𝑋, 𝑑) be a metric space, 𝐹 : 𝑋 → 𝑋 a map,
and 𝑆 a set of 𝑋 with at least two distinct points. Then 𝑆 is
called a scrambled set of𝐹 if for any two distinct points 𝑥, 𝑦 ∈
𝑆,

(i) lim inf
𝑛→∞
𝑑(𝐹
𝑛
(𝑥), 𝐹

𝑛
(𝑦)) = 0;

(ii) lim sup
𝑛→∞
𝑑(𝐹
𝑛
(𝑥), 𝐹

𝑛
(𝑦)) > 0.

Themap𝐹 is said to be chaotic in the sense of Li-Yorke if there
exists an uncountable scrambled set 𝑆 of 𝐹.

Remark 2. There are three conditions in the original char-
acterization of chaos in Li-Yorke’s theorem [23]. Besides
conditions (i) and (ii), the third one is that, for all 𝑥 ∈ 𝑆 and
for all periodic points 𝑝 of 𝐹,

lim sup
𝑛→∞

𝑑 (𝐹
𝑛
(𝑥) , 𝐹

𝑛
(𝑝)) > 0. (9)

But conditions (i) and (ii) together imply that the scrambled
set 𝑆 contains at most one point 𝑥 that does not satisfy the
above condition. Hence, the third condition is not essential
and can be removed.

Definition 3 (see [24]). Let (𝑋, 𝑑) be a metric space. A map
𝐹 : 𝑉 ⊂ 𝑋 → 𝑉 is said to be chaotic on𝑉 in the sense ofDev-
aney if

(i) the set of the periodic points of 𝐹 is dense in 𝑉;
(ii) 𝐹 is topologically transitive in 𝑉;
(iii) 𝐹 has sensitive dependence on initial conditions in𝑉.

Remark 4. By the result of Banks et al. [28], conditions (i)
and (ii) together imply condition (iii) if 𝐹 is continuous in 𝑉.
Consequently, condition (iii) is redundant in the above def-
inition if 𝐹 is continuous in 𝑉. It has been proved in [29]
that, under some conditions, chaos in the sense of Devaney
is stronger than that in the sense of Li-Yorke.

For convenience, some definitions of relevant concepts
given in [30] are listed below.

Definition 5 (see [30, Definitions 2.1 and 2.4]). Let (𝑋, 𝑑) be a
metric space and 𝐹 : 𝑋 → 𝑋 a map. A point 𝑧 ∈ 𝑋 is called
an expanding fixed point (or a repeller) of𝐹 in𝐵

𝑟
(𝑧) for some

constant 𝑟 > 0, if 𝐹(𝑧) = 𝑧 and there exists a constant 𝜆 > 1
such that

𝑑 (𝐹 (𝑥) , 𝐹 (𝑦)) ≥ 𝜆𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐵
𝑟
(𝑧) . (10)

The constant𝜆 is called an expanding coefficient of𝐹 in𝐵
𝑟
(𝑧).

Furthermore, 𝑧 is called a regular expanding fixed point of 𝐹
in 𝐵
𝑟
(𝑧) if 𝑧 is an interior point of 𝐹(𝐵

𝑟
(𝑧)). Otherwise, 𝑧 is

called a singular expanding fixed point of 𝐹 in 𝐵
𝑟
(𝑧).

Now, we introduce some relative concepts for system (3),
which are motivated by [15, Definitions 5.1 and 5.2].There are
identical concepts for system (1).

Definition 6. Consider the following.

(i) A point 𝑥 ∈ R𝑘+1 is called an 𝑚-periodic point of
system (3) if 𝑥 ∈ R𝑘+1 is an 𝑚-periodic point of its
induced system (7); that is, 𝐹𝑚(𝑥) = 𝑥, 𝐹𝑗(𝑥) ̸= 𝑥, and
1 ≤ 𝑗 ≤ 𝑚 − 1. In the special case of𝑚 = 1, 𝑥 is called
a fixed point or a steady state of system (3).

(ii) The concepts of density of periodic points, topological
transitivity, sensitive dependence on initial condi-
tions, and the invariant set for system (3) are defined
similarly to those for its induced system (7) in R𝑘+1.

(iii) System (3) is said to be chaotic in the sense ofDevaney
(or Li-Yorke) on 𝑉 ⊂ R𝑘+1 if its induced system (7)
is chaotic in the sense of Devaney (or Li-Yorke) on
𝑉 ⊂ R𝑘+1.

The following two lemmaswill be used in the next section.

Lemma 7. Assume that the map𝑓 in (1) is continuously differ-
entiable in a neighborhood of (0, 0) with 𝑓(0, 0) = 0 and satis-
fies





𝑓
𝑥
(0, 0)




−






𝑓
𝑦
(0, 0)






> 1; (11)

then the fixed point 𝑂 := (0, . . . , 0)𝑇 ∈ R𝑘+1 of system (6) is a
regular expanding fixed point in some norm in R𝑘+1.

Proof. It follows from 𝑓(0, 0) = 0 that 𝑂 is a fixed point of
system (6). Since 𝑓 is continuously differentiable in a neigh-
borhood of (0, 0), 𝐹 is continuously differentiable in some
neighborhood of 𝑂. The Jacobian matrix of map 𝐹 in system
(6) at 𝑂 is

𝐷𝐹 (𝑂) = (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 1

𝑓
𝑥
(0, 0) 0 0 ⋅ ⋅ ⋅ 𝑓

𝑦
(0, 0)

)

(𝑘+1)×(𝑘+1)

,

(12)

and its characteristic equation is

𝜆
𝑘+1
− 𝑓
𝑦
(0, 0) 𝜆

𝑘
− 𝑓
𝑥
(0, 0) = 0. (13)

From |𝑓
𝑥
(0, 0)|−|𝑓

𝑦
(0, 0)| > 1, we can show that all the eigen-

values of 𝐷𝐹(𝑂) have absolute values larger than 1. Other-
wise, suppose that there exists an eigenvalue𝜆

0
of𝐷𝐹(𝑂)with

|𝜆
0
| ≤ 1; then we get the following inequality:

1 +






𝑓
𝑦
(0, 0)






≥






𝜆
𝑘+1

0
− 𝑓
𝑦
(0, 0) 𝜆

𝑘

0







=




𝑓
𝑥
(0, 0)




> 1 +






𝑓
𝑦
(0, 0)






,

(14)

which is a contradiction. Then it follows from [31, Theorem
4.3] that there exist a positive constant 𝑟∗ and a norm ‖ ⋅ ‖∗ in
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R𝑘+1 such that 𝐹 is continuously differentiable in 𝐵
𝑟
∗(𝑂) and

𝑂 is an expanding fixed point of𝐹 in𝐵
𝑟
∗(𝑂) in the norm ‖ ⋅ ‖∗;

that is,




𝐹 (𝑥) − 𝐹 (𝑦)






∗

≥ 𝜇




𝑥 − 𝑦





∗

, ∀𝑥, 𝑦 ∈ 𝐵
𝑟
∗ (𝑂) , (15)

where 𝜇 > 1 is an expanding coefficient of 𝐹 in 𝐵
𝑟
∗(𝑂).

Further, it follows from [30, Lemma 2.2] that 𝑂 is a regular
expanding fixed point of system (6) in the norm ‖ ⋅ ‖∗ inR𝑘+1.
This completes the proof.

Since the result in the following lemma is related to
the one-sided symbolic dynamical system (∑+

2
, 𝜎), we briefly

recall some results of it for convenience. Let
+

∑

2

:= {𝑠 = (𝑠
0
, 𝑠
1
, 𝑠
2
, . . .) : 𝑠

𝑗
= 0 or 1} (16)

with the distance

𝜌 (𝑠, 𝑡) :=

∞

∑

𝑖=0





𝑠
𝑖
− 𝑡
𝑖






2
𝑖
, (17)

where 𝑠 = (𝑠
0
, 𝑠
1
, 𝑠
2
, . . .) and 𝑡 = (𝑡

0
, 𝑡
1
, 𝑡
2
, . . .). Then

(∑
+

2
, 𝜌) is a complete metric space and a Cantor set. The shift

map 𝜎 : ∑+
2
→ ∑

+

2
defined by 𝜎((𝑠

0
, 𝑠
1
, 𝑠
2
, . . .)) =

(𝑠
1
, 𝑠
2
, . . .) is continuous. The dynamical system defined by

𝜎 is called a one-sided symbolic dynamical system. It has
plentiful dynamical behaviors; we refer to [24, 26] for details.
Particularly, it is chaotic in the sense of both Devaney and Li-
Yorke and has a positive topological entropy.

Lemma 8 (see [17, Theorem 4.3 and Corollary 4.2]). Let a
map 𝑓 : R𝑛 → R𝑛 have 𝑘 (≥2) different fixed points 𝑧

1
, . . . ,

𝑧
𝑘
∈ R𝑛. Assume that

(i) for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘, 𝑧
𝑖
is an expanding fixed point of 𝑓

in some norm ‖ ⋅ ‖
𝑖
;

(ii) 𝑓 has a 𝑘-heteroclinic cycle connecting fixed points
𝑧
1
, . . . , 𝑧

𝑘
and is continuously differentiable in some

neighborhood of each point 𝑥
0
on the cycle satisfying

det𝐷𝑓(𝑥
0
) ̸= 0.

Then for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘, and for each neighborhood 𝑈
𝑖
of 𝑧
𝑖
,

there exist a positive integer 𝑛
𝑖
and a Cantor set Λ

𝑖
⊂ 𝑈
𝑖
such

that 𝑓𝑛𝑖 : Λ
𝑖
→ Λ
𝑖
is topologically conjugate to the one-sided

symbolic dynamical system𝜎 : ∑+
2
→ ∑
+

2
. Consequently, there

exists a compact and perfect invariant set𝐷
𝑖
= ⋃
𝑛
𝑖
−1

𝑗=0
𝑓
𝑗
(Λ
𝑖
) ⊂

R𝑛, containing the Cantor set Λ
𝑖
, such that 𝑓 is chaotic on 𝐷

𝑖

in the sense of Devaney as well as in the sense of Li-Yorke.

Remark 9. Under the conditions in Lemma 8, there exists a
positive integer𝑝, such that𝑓𝑝 has a regular and nondegener-
ate 𝑘-heteroclinic cycle connecting repellers 𝑧

1
, . . . , 𝑧

𝑘
in the

Euclidean norm ‖⋅‖.Therefore, Lemma 8 can be briefly stated
as the following: “a regular and nondegenerate heteroclinic
cycle connecting repellers in R𝑛 implies chaos in the sense of
both Devaney and Li-Yorke.” We refer to [17] for details.

3. A Chaotification Scheme

In this section, a chaotification scheme for the controlled
system (3) with controller (4) is established for the case
that the original system (1) has at least two fixed points.
Here, we only need that the map 𝑓 of the original system is
continuously differentiable in a region containing two fixed
points. In the case that the fixed points are more than two,
if two of them satisfy conditions in the following theorem,
then we can choose the two fixed points to establish a
chaotification scheme by using Lemma 8 for 𝑘 = 2. If none
of the two fixed points is the origin 𝑂, then we can choose
a transformation of coordinates such that one fixed point
becomes the origin 𝑂 in a new coordinate system.Therefore,
without loss of generality, we only discuss the case that the
original system (1) has two fixed points 𝑂 = (0, . . . , 0)𝑇 and
𝑃 := (𝑥

∗
, . . . , 𝑥

∗
)
𝑇 in R𝑘+1.

Theorem 10. Consider the controlled system (3) with control-
ler (4). Assume that

(i) 𝑓 is continuously differentiable in [−𝑟, 𝑟]2 for some 𝑟 >
0 with 𝑓(0, 0) = 0, which implies that there exist pos-
itive constants 𝑀 and 𝐿 such that for any (𝑥, 𝑦) ∈
[−𝑟, 𝑟]

2





𝑓 (𝑥, 𝑦)





≤ 𝑀,





𝑓
𝑥
(𝑥, 𝑦)




≤ 𝐿,






𝑓
𝑦
(𝑥, 𝑦)






≤ 𝐿;

(18)

(ii) there exists a point 𝑥∗ ∈ (−𝑟, 𝑟) with 𝑥∗ ̸= 0 such that
𝑓(𝑥
∗
, 𝑥
∗
) = 𝑥
∗.

Then there exist two positive constants 𝛼
0
and 𝛽

0
satisfying

𝛼
0
> 2 (𝑀 +





𝑥
∗



) , 𝛽

0
=

2𝑚
0
𝜋

|𝑥
∗
|

>

1 + 2𝐿

𝛼
0

, (19)

where𝑚
0
is some positive integer, such that, for any 𝛼 > 𝛼

0
and

𝛽 = 𝛽
0
, the controlled system (3) with controller (4) is chaotic

in the sense of both Devaney and Li-Yorke.

Proof. In order to prove that system (3) with controller (4) is
chaotic in the sense of both Devaney and Li-Yorke, we only
need to prove that its reformulated system (7) is chaotic in
the sense of both Devaney and Li-Yorke. Lemma 8 is used
to prove this theorem. Thus it suffices to show that all the
assumptions in Lemma 8 hold for 𝑘 = 2.

For convenience, let 𝛼 > 𝛼
0
and 𝛽 = 2𝑚𝜋/|𝑥∗| > (1 +

2𝐿)/𝛼
0
throughout the proof, where 𝑚 is an undetermined

integer.
By assumption (i), we find that 𝑔 is continuously differ-

entiable in [−𝑟, 𝑟]2 and 𝐺 is continuously differentiable in
[−𝑟, 𝑟]

𝑘+1. It is clear that 𝑔(0, 0) = 0 and 𝑔(𝑥∗, 𝑥∗) = 𝑥∗. It can
also easily be proved that𝑂 and 𝑃 = (𝑥∗, . . . , 𝑥∗)𝑇 ∈ R𝑘+1 are
two fixed points of 𝐺. From the last two relations of (18), it
follows that




𝑔
𝑥
(0, 0)




=




𝑓
𝑥
(0, 0) + 𝛼𝛽






≥ 𝛼𝛽 −




𝑓
𝑥
(0, 0)




≥ 𝛼𝛽 − 𝐿

> 1 + 𝐿 ≥ 1 +






𝑓
𝑦
(0, 0)






= 1 +






𝑔
𝑦
(0, 0)






.

(20)
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Similarly, it can also be shown that





𝑔
𝑥
(𝑥
∗
, 𝑥
∗
)




=




𝑓
𝑥
(𝑥
∗
, 𝑥
∗
) + 𝛼𝛽




> 1 +






𝑔
𝑦
(𝑥
∗
, 𝑥
∗
)






.

(21)

Then, it follows from Lemma 7 that 𝑂 and 𝑃 are two regular
expanding fixed points of system (7). That is, there exist two
positive constants 𝑟

1
< 𝑟, 𝑟

2
< 𝑟 and two norms ‖ ⋅ ‖

1
, ‖ ⋅ ‖
2

in R𝑘+1 such that 𝑂 and 𝑃 are two regular expanding fixed
points of 𝐺 in 𝐵

𝑟
1

(𝑂) in norm ‖ ⋅ ‖
1
and in 𝐵

𝑟
2

(𝑃) in norm
‖ ⋅ ‖
2
, respectively. For convenience, we can choose 𝑟

1
and 𝑟
2

to be very small such that 𝐵
𝑟
1

(𝑂) ∩ 𝐵
𝑟
2

(𝑃) = 0.
Next, we need to show that 𝐺 has a 2-heteroclinic cycle

connecting fixed points 𝑂 and 𝑃. There exist small intervals
𝑈
1
containing 0 and 𝑈

2
containing 𝑥∗ such that 𝑈

1
× 𝑈
1
×

⋅ ⋅ ⋅ × 𝑈
1
⊂ 𝐵
𝑟
1

(𝑂) and 𝑈
2
× 𝑈
2
× ⋅ ⋅ ⋅ × 𝑈

2
⊂ 𝐵
𝑟
2

(𝑂). Consider
the following equation:

ℎ
1
(𝑥) := 𝑓 (𝑥, 𝑥

∗
) + 𝛼 sin (𝛽𝑥) − 𝑥∗ = 0. (22)

Obviously, ℎ
1
is continuously differentiable in [−𝑟, 𝑟]. It is

easy to see from (18) that

ℎ
1
(





𝑥
∗



4𝑚

) = 𝑓(





𝑥
∗



4𝑚

, 𝑥
∗
) + 𝛼 − 𝑥

∗
≥ 𝛼 −𝑀 −





𝑥
∗



> 0,

ℎ
1
(

3




𝑥
∗



4𝑚

) = 𝑓(

3




𝑥
∗



4𝑚

, 𝑥
∗
) − 𝛼 − 𝑥

∗
≤ 𝑀 +




𝑥
∗



− 𝛼 < 0,

(23)

which implies that there exists a point 𝑥
1
with |𝑥∗|/4𝑚 <

𝑥
1
< 3|𝑥

∗
|/4𝑚 such that ℎ

1
(𝑥
1
) = 0 by the continuity of ℎ

1
.

Consider the following two equations:

ℎ
2
(𝑥) := 𝑓 (𝑥, 𝑥

1
) + 𝛼 sin (𝛽𝑥) − 𝑥∗ = 0,

ℎ
3
(𝑥) := 𝑓 (𝑥, 0) + 𝛼 sin (𝛽𝑥) = 0.

(24)

With a similar method, we can also show that there exist
two points 𝑥

2
with |𝑥∗|/4𝑚 < 𝑥

2
< 3|𝑥

∗
|/4𝑚 and 𝑥

3
with

|𝑥
∗
| + |𝑥
∗
|/4𝑚 < 𝑥

3
< |𝑥
∗
| + 3|𝑥

∗
|/4𝑚 such that ℎ

2
(𝑥
2
) = 0

and ℎ
3
(𝑥
3
) = 0. Similarly, the following equation

ℎ
4
(𝑥) := 𝑓 (𝑥, 𝑥

3
) + 𝛼 sin (𝛽𝑥) = 0 (25)

also has a solution 𝑥
4
with |𝑥∗| + |𝑥∗|/4𝑚 < 𝑥

4
< |𝑥
∗
| +

3|𝑥
∗
|/4𝑚 such that ℎ

4
(𝑥
4
) = 0.We can choose a large positive

integer 𝑚
0
such that for any 𝑚 ≥ 𝑚

0
the points 𝑥

1
, 𝑥
2
are in

𝑈
1
and 𝑥

3
, 𝑥
4
are in 𝑈

2
.

Take 𝑂
0
= (𝑥
2
, 𝑥
1
, . . . , 𝑥

1
)
𝑇
∈ R𝑘+1. It is clear that 𝑂

0
∈

𝐵
𝑟
1

(𝑂) and 𝑂
0
̸= 𝑂. Set 𝑂

𝑗
= 𝐺(𝑂

𝑗−1
) for 1 ≤ 𝑗 ≤ 𝑘. We can

easily show that 𝑂
𝑗
= (𝑥
1
, . . . , 𝑥

1
, 𝑥
∗
, . . . , 𝑥

∗
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗

)
𝑇
∉ 𝐵
𝑟
1

(𝑂) for

1 ≤ 𝑗 ≤ 𝑘, and

𝐺
𝑘+1
(𝑂
0
) = 𝑃. (26)

Take 𝑃
0
= (𝑥
4
, 𝑥
3
, . . . , 𝑥

3
)
𝑇
∈ R𝑘+1. It is also clear that

𝑃
0
∈ 𝐵
𝑟
2

(𝑃) and 𝑃
0
̸= 𝑃. Set 𝑃

𝑗
= 𝐺(𝑃

𝑗−1
) for 1 ≤ 𝑗 ≤ 𝑘. It can

also easily be shown that 𝑃
𝑗
= (𝑥
3
, . . . , 𝑥

3
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗

)
𝑇
∉ 𝐵
𝑟
2

(𝑃)

for 1 ≤ 𝑗 ≤ 𝑘, and

𝐺
𝑘+1
(𝑃
0
) = 𝑂. (27)

Therefore, 𝐺 has a 2-heteroclinic cycle connecting repellers
𝑂 and 𝑃.

Finally, we will show that

det𝐷𝐺(𝑂
𝑗
) ̸= 0, det𝐷𝐺(𝑃

𝑗
) ̸= 0, for 0 ≤ 𝑗 ≤ 𝑘.

(28)

We use the method of proof by contradiction to prove it. For
simplicity, we only prove that condition (28) holds for 𝑂

0
.

Suppose that det𝐷𝐺(𝑂
0
) = 0. A direct calculation shows

that, for any 𝑢 = (𝑢
1
, . . . , 𝑢

𝑘+1
)
𝑇
∈ R𝑘+1,

det𝐷𝐺 (𝑢) = (−1)𝑘 [𝑓
𝑥
(𝑢
1
, 𝑢
𝑘+1
) + 𝛼𝛽 cos (𝛽𝑢

1
)] . (29)

Then it follows from (29) that

𝑓
𝑥
(𝑥
2
, 𝑥
1
) + 𝛼𝛽 cos (𝛽𝑥

2
) = 0. (30)

Hence, cos(𝛽𝑥
2
) = −(1/𝛼𝛽)𝑓

𝑥
(𝑥
2
, 𝑥
1
). On the other hand, it

follows from ℎ
2
(𝑥
2
) = 0 that sin(𝛽𝑥

2
) = (1/𝛼)[𝑥

∗
−𝑓(𝑥
2
, 𝑥
1
)].

Then, we get the following contradiction:

1 =

[𝑓
𝑥
(𝑥
2
, 𝑥
1
)]
2

𝛼
2
𝛽
2
+

[𝑥
∗
− 𝑓 (𝑥

2
, 𝑥
1
)]
2

𝛼
2

<

𝐿
2

(1 + 2𝐿)
2
+

(𝑀 +




𝑥
∗


)
2

4(𝑀 + |𝑥
∗
|)
2
<

1

2

.

(31)

Therefore, det𝐷𝐺(𝑂
0
) ̸= 0. Similarly, we can prove that con-

dition (28) holds for 0 ≤ 𝑗 ≤ 𝑘.
Therefore, all the assumptions in Lemma 8 are satisfied

for 𝑘 = 2. It follows from Lemma 8 that, for any 𝛼 > 𝛼
0
and

𝛽 = 𝛽
0
, there exists regular and nondegenerate 2-heteroclinic

cycle repellers 𝑂 and 𝑃. Consequently, system (7) and thus
system (3) with controller (4) are chaotic in the sense of both
Devaney and Li-Yorke. This completes the proof.

Remark 11. From the proof of Theorem 10, we see that there
exists some positive integer𝑚

0
such that, for any 𝛼 > 𝛼

0
, 𝛽
0
=

2𝑚
0
𝜋/|𝑥
∗
| > (1 + 2𝐿)/𝛼

0
, system (7) is chaotic in the sense

of both Devaney and Li-Yorke. However, it is very difficult
to determine the particular integer 𝑚

0
since the expanding

area of a fixed point is not easy to obtain, and there are few
methods to determine the concrete expanding area of a fixed
point in the existing literatures. In practical problems, we can
take the positive integer𝑚

0
large enough such that controller

(4) can be used to chaotify system (1).

Remark 12. There are many delay discrete dynamical systems
which have more than two fixed points. As all or some of
the fixed points satisfy assumptions inTheorem 10, which are
not very strict conditions, we can choose two of them and
use the chaotification scheme of this paper to chaotify these
systems. Since the result ofTheorem 10 follows from the result
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of Lemma 8, there will be many chaotic invariant sets when
using the chaotification scheme to chaotify these systems.
Therefore, the chaotic behaviors induced by a heteroclinic
cycle connecting repellers seemed to be more complex than
those induced by a single snap-back repeller. The difference
between them will be our future research.

4. An Example

In the last section, we present an example of chaotification for
the delay difference equation (1) with computer simulations.
The map 𝑓 in (1) is taken as follows:

𝑓 (𝑥, 𝑦) = 2 sin [ 𝜋
12

(𝑥 + 𝑦)] . (32)

It is obvious that 𝑓 is continuously differentiable on R2
and satisfies condition (18); that is, for any (𝑥, 𝑦) ∈ R2,





𝑓 (𝑥, 𝑦)





≤ 2,





𝑓
𝑥
(𝑥, 𝑦)




≤

𝜋

6

,






𝑓
𝑦
(𝑥, 𝑦)






≤

𝜋

6

,

(33)

where𝑀 = 2 and 𝐿 = 𝜋/6 in condition (18). It is also clear
that 𝑓(0, 0) = 0 and there exists a point 𝑥∗ = 1 such that
𝑓(1, 1) = 1. Therefore, all the assumptions in Theorem 10
are satisfied. It follows from Theorem 10 that there exist two
positive constants

𝛼
0
> 2 (𝑀 +





𝑥
∗



) = 6,

𝛽
0
= 2𝑚
0
𝜋 =

2𝑚
0
𝜋

|𝑥
∗
|

>

3 + 𝜋

18

>

1 + 2𝐿

𝛼
0

,

(34)

where 𝑚
0
is some positive integer, such that, for any 𝛼 > 𝛼

0

and 𝛽 = 𝛽
0
, the controlled system (3) with controller (4) is

chaotic in the sense of both Devaney and Li-Yorke.
In fact, it is obvious that the solutions of the uncontrolled

system (6) are bounded in [−2, 2]2 for 𝑘 = 1. There are three
fixed points for the uncontrolled system (6); that is, 𝑂 =
(0, 0)
𝑇, 𝑃 = (1, 1)𝑇, 𝑄 = (−1, −1)𝑇. One can easily verify

that 𝑂 is an unstable fixed point and that 𝑃 and 𝑄 are two
stable fixed points. When we take an initial condition 𝑢(0) =
(0.01, 0.01)

𝑇, the solution 𝑢(𝑛) of the uncontrolled system
(6) should tend to the stable fixed point 𝑃 when 𝑛 tends to
infinity. This conforms to Figure 1, where the curve tends
from (0.01, 0.01)𝑇 to the stable fixed point (1, 1)𝑇 and 𝑛 is
taken from 0 to 20000 for simulation. There is a similar
conclusion for the case 𝑘 = 2. For simplicity, we omit it.

In order to help better visualize the theoretical result of
Theorem 10, we take 𝑘 = 1, 2,𝑚

0
= 50 and

𝛼 = 100, 𝛽 = 100𝜋, (35)

for computer simulations. Both of them satisfy the above
conditions. Consequently, the controlled system (7) should be
chaotic in the sense of both Devaney and Li-Yorke. It is obvi-
ous that the solutions of controlled system (7) are bounded
in [−102, 102]2 and [−102, 102]3 for 𝑘 = 1 and 𝑘 = 2, respec-
tively. The simulated results in Figures 2 and 4 show that
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1
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u
2

u1

Figure 1: 2D computer simulation result shows simple dynamical
behaviors of the uncontrolled system (6) in the (𝑢

1
, 𝑢
2
) space for 𝑘 =

1, and 𝑛 from 0 to 20000, with the initial condition 𝑢(0) = (0.01,
0.01)
𝑇.
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Figure 2: 2D computer simulation result shows complex dynamical
behaviors of the controlled system (7) in the (𝑢

1
, 𝑢
2
) space for 𝛼 =

100, 𝛽 = 100 𝜋, 𝑘 = 1, and 𝑛 from 0 to 20000, with the initial con-
dition 𝑢(0) = (0.01, 0.01)𝑇.

the controlled system (7) indeed has complex behaviors,
where 𝑛 is taken from 0 to 20000.

In summary, the simulated results show that the uncon-
trolled system (6), that is, system (1), has simple dynamical
behaviors, and the controlled system (7), that is, system (3)
with controller (4), has complex dynamical behaviors; see
Figures 1, 2, 3, and 4. The graphs presented indeed display
an expected well-behaved structure in one moment, and
after the chaotification treatment the referred system presents
some behavior that resembles chaos. Nothing is less than
expected.
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Figure 3: 3D computer simulation result shows simple dynamical
behaviors of the uncontrolled system (6) in the (𝑢

1
, 𝑢
2
, 𝑢
3
) space for

𝑘 = 2, and 𝑛 from 0 to 20000, with the initial condition 𝑢(0) =
(0.01, 0.01, 0.01)

𝑇.
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Figure 4: 3D computer simulation result shows complex dynamical
behaviors of the controlled system (7) in the (𝑢

1
, 𝑢
2
, 𝑢
3
) space for𝛼 =

100, 𝛽 = 100 𝜋, 𝑘 = 2, and 𝑛 from 0 to 20000, with the initial con-
dition 𝑢(0) = (0.01, 0.01, 0.01)𝑇.

5. Conclusion

In this paper, we consider anticontrol of chaos for a class of
delay difference equations via the feedback control technique.
Based on the result that a regular and nondegenerate het-
eroclinic cycle connecting repellers for maps implies chaos,
we establish a chaotification theorem. The controlled system
is proved to be chaotic in the sense of both Devaney and
Li-Yorke. It is noted that there are many delay discrete
dynamical systems which have more than two fixed points.
As all or some of the fixed points satisfy assumptions in
Theorem 10, which are not very strict conditions, we can
choose two of them and use the chaotification scheme
established in this paper to chaotify these systems. Numerical
simulations confirm the theoretical analysis. However, the
map of the original system needs to satisfy some conditions
in Theorem 10. Therefore, it is very interesting to explore the
chaotification scheme for more general maps, which will be
our further research.
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