3,121 research outputs found

    Observer Based Current Controlled Single Phase Grid Connected Inverter

    Get PDF
    AbstractThis paper describes a decoupled current control of single phase grid connected inverter achieved through d-q control via observer. The d-q control enables to set zero steady state error. Observer helps in giving a very pure in phase and quadrature components of the fundamental load current, which is being converted into d-q frame through Park transformation and used as the feed-back signal for the control system. In addition to the fundamental component the observer extracts the DC component of the grid current. Injection of these DC component into the grid has been prevented by these controller. This decoupled control has helped in controlling active and reactive components of grid current individually. Therefore by controlling the active and reactive power injected into the grid, the power factor of the grid can be improved. The Simulation study is conducted using MATLAB, considering the grid as a constant voltage source and the results are also incorporated. The performance of the control technique for sudden changes in grid voltage, variation in inductance has been shown through simulation. This control strategy enables in reducing the harmonics in current because of the observer used in feed-back

    Distributed control of a fault tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing

    Get PDF
    Modular generator and converter topologies are being pursued for large offshore wind turbines to achieve fault tolerance and high reliability. A centralized controller presents a single critical point of failure which has prevented a truly modular and fault tolerant system from being obtained. This study analyses the inverter circuit control requirements during normal operation and grid fault ride-through, and proposes a distributed controller design to allow inverter modules to operate independently of each other. All the modules independently estimate the grid voltage magnitude and position, and the modules are synchronised together over a CAN bus. The CAN bus is also used to interleave the PWM switching of the modules and synchronise the ADC sampling. The controller structure and algorithms are tested by laboratory experiments with respect to normal operation, initial synchronization to the grid, module fault tolerance and grid fault ride-through

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    Sensorless multi-loop control of phase-controlled series-parallel resonant converter

    Get PDF
    This paper proposes a multi-loop controller for the phase-controlled series-parallel resonant converter. Output voltage is solely measured for control and inner loop is used to enhance closed loop stability and dynamic performance compared to single-loop control. No additional sensors are used for inner loop variables. These are estimated using a Kalman filter, based on a linearized converter model. The advantage of this sensorless scheme is not only reducing the number of sensors but more significantly providing an alternative to sensing high frequency resonant tank variables which require high microcontroller resolution in real time. First, the converter non-linear large signal behavior is linearized using a state feedback based scheme. Consequently, the converter preserves its large signal characteristics while modeled as a linear system. Comparison is made between the most suitable state variables for feedback, according to a stability study. Finally, simulation and experimental results are demonstrated to validate the improved system performance in contrast with single-loop control

    Single-sensor control of LCL-filtered grid-connected inverters

    Get PDF

    Model-based control methods to improve the power qualify of grid-connected single-phase inverters.

    Get PDF
    Power electronic converters are commonly used for interfacing distributing generation sources (DGs) to the electrical power system networks. This is necessary because these DGs usually have different output characteristics and cannot be connected directly to the local load and/or the grid. The power electronic front-end converter is an inverter whose dc link is fed by an ac/dc converter or by a dc/dc converter, according to the DG source type. The commercial front-end inverters are designed to operate either in grid-connected (GC) mode or in stand-alone (SA) mode. In the SA mode, the inverter is connected to local load, but in the GC mode the inverter must be connected to the utility grid and a local load could be connected to this system as well. Based on this, any designed or proposed controller for such systems should work well in both operation modes. The control objective in SA mode is to improve the quality of the local load voltage, and the control objective in GC mode is to inject clean current to the grid with low total harmonic distortion (THD). Most of the control schemes in the literature have been designed to work in one of these operation modes and ensure low THD either for the local load voltage or for the injected grid current. However, some of the existing control schemes in the literature proposed different control architectures for each operation mode. Moreover, there are a few researches have been reported in the literature based on the cascaded control theory to obtain low THD for both the local load voltage simultaneously with the injected current to the grid in the grid-connected mode. Due to the growing penetration of the DG sources in the residential applications, single-phase grid-connected inverters have gained much attention. For this reason, the single-phase grid-connected inverter systems have been chosen in our study. Since such systems have nonlinearity in its behavior, different nonlinear model-based control schemes have been designed in order to improve the quality of the local load voltage while injecting clean current to the grid for single-phase grid-connected inverter systems by using single structure control scheme. Furthermore, the proposed control schemes ensure the seamless transfer between GC and SA operation modes without adjusting the controller structure and with self-synchronization ability

    AC voltage regulation of a bidirectional high-frequency link converter using a deadbeat controller

    Get PDF
    This paper presents a digital controller for AC voltage regulation of a bidirectional high-frequency link (BHFL) inverter using Deadbeat control. The proposed controller consists of inner current loop, outer voltage loop and a feed-forward controller, which imposes a gain scheduling effect according to the reference signal to compensate the steady-state error of the system. The main property of the proposed controller is that the current- and the voltage-loop controllers have the same structure, and use the same sampling period. This simplifies the design and implementation processes. To improve the overall performance of the system, additional disturbance decoupling networks are employed. This takes into account the model discretization effect. Therefore, accurate disturbance decoupling can be achieved, and the system robustness towards load variations is increased. To avoid transformer saturation due to low frequency voltage envelopes, an equalized pulse width modulation (PWM) technique has been introduced. The proposed controller has been realized using the DS1104 digital signal processor (DSP) from dSPACE. Its performances have been tested on a one kVA prototype inverter. Experimental results showed that the proposed controller has very fast dynamic and good steady-state responses even under highly nonlinear loads
    corecore