20,194 research outputs found

    Man-vehicle systems research facility: Design and operating characteristics

    Get PDF
    The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics

    Simulation verification techniques study

    Get PDF
    Results are summarized of the simulation verification techniques study which consisted of two tasks: to develop techniques for simulator hardware checkout and to develop techniques for simulation performance verification (validation). The hardware verification task involved definition of simulation hardware (hardware units and integrated simulator configurations), survey of current hardware self-test techniques, and definition of hardware and software techniques for checkout of simulator subsystems. The performance verification task included definition of simulation performance parameters (and critical performance parameters), definition of methods for establishing standards of performance (sources of reference data or validation), and definition of methods for validating performance. Both major tasks included definition of verification software and assessment of verification data base impact. An annotated bibliography of all documents generated during this study is provided

    Developing a Mini Smart House model

    Get PDF
    The work is devoted to designing a smart home educational model. The authors analyzed the literature in the field of the Internet of Things and identified the basic requirements for the training model. It contains the following levels: command, communication, management. The authors identify the main subsystems of the training model: communication, signaling, control of lighting, temperature, filling of the garbage container, monitoring of sensor data. The proposed smart home educational model takes into account the economic indicators of resource utilization, which gives the opportunity to save on payment for their consumption. The hardware components for the implementation of the Mini Smart House were selected in the article. It uses a variety of technologies to conveniently manage it and use renewable energy to power it. The model was produced in-dependently by students involved in the STEM project. Research includes sketching, making construction parts, sensor assembly and Arduino boards, programming in the Arduino IDE environment, testing the functioning of the system. Research includes sketching, making some parts, assembly sensor and Arduino boards, programming in the Arduino IDE environment, testing the functioning of the system. Approbation Mini Smart House researches were conducted within activity the STEM-center of Physics and Mathematics Faculty of Ternopil Volodymyr Hnatiuk National Pedagogical University, in particular during the educational process and during numerous trainings and seminars for pupils and teachers of computer science
    corecore