5 research outputs found

    High-accuracy Motion Estimation for MEMS Devices with Capacitive Sensors

    Full text link
    With the development of micro-electro-mechanical system (MEMS) technologies, emerging MEMS applications such as in-situ MEMS IMU calibration, medical imaging via endomicroscopy, and feedback control for nano-positioning and laser scanning impose needs for especially accurate measurements of motion using on-chip sensors. Due to their advantages of simple fabrication and integration within system level architectures, capacitive sensors are a primary choice for motion tracking in those applications. However, challenges arise as often the capacitive sensing scheme in those applications is unconventional due to the nature of the application and/or the design and fabrication restrictions imposed, and MEMS sensors are traditionally susceptible to accuracy errors, as from nonlinear sensor behavior, gain and bias drift, feedthrough disturbances, etc. Those challenges prevent traditional sensing and estimation techniques from fulfilling the accuracy requirements of the candidate applications. The goal of this dissertation is to provide a framework for such MEMS devices to achieve high-accuracy motion estimation, and specifically to focus on innovative sensing and estimation techniques that leverage unconventional capacitive sensing schemes to improve estimation accuracy. Several research studies with this specific aim have been conducted, and the methodologies, results and findings are presented in the context of three applications. The general procedure of the study includes proposing and devising the capacitive sensing scheme, deriving a sensor model based on first principles of capacitor configuration and sensing circuit, analyzing the sensor’s characteristics in simulation with tuning of key parameters, conducting experimental investigations by constructing testbeds and identifying actuation and sensing models, formulating estimation schemes is to include identified actuation dynamics and sensor models, and validating the estimation schemes and evaluating their performance against ground truth measurements. The studies show that the proposed techniques are valid and effective, as the estimation schemes adopted either fulfill the requirements imposed or improve the overall estimation performance. Highlighted results presented in this dissertation include a scale factor calibration accuracy of 286 ppm for a MEMS gyroscope (Chapter 3), an improvement of 15.1% of angular displacement estimation accuracy by adopting a threshold sensing technique for a scanning micro-mirror (Chapter 4), and a phase shift prediction error of 0.39 degree for a electrostatic micro-scanner using shared electrodes for actuation and sensing (Chapter 5).PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147568/1/davidsky_1.pd

    DEVELOPMENT OF A VIBRATION-BASED MEMS ENERGY HARVESTER

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Optical MEMS

    Get PDF
    Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense

    Analysis, Design and Fabrication of Micromixers, Volume II

    Get PDF
    Micromixers are an important component in micrototal analysis systems and lab-on-a-chip platforms which are widely used for sample preparation and analysis, drug delivery, and biological and chemical synthesis. The Special Issue "Analysis, Design and Fabrication of Micromixers II" published in Micromachines covers new mechanisms, numerical and/or experimental mixing analysis, design, and fabrication of various micromixers. This reprint includes an editorial, two review papers, and eleven research papers reporting on five active and six passive micromixers. Three of the active micromixers have electrokinetic driving force, but the other two are activated by mechanical mechanism and acoustic streaming. Three studies employs non-Newtonian working fluids, one of which deals with nano-non-Newtonian fluids. Most of the cases investigated micromixer design

    Control and estimation with threshold sensing for Inertial Measurement Unit calibration using a piezoelectric microstage

    No full text
    corecore