6,168 research outputs found

    Decomposition Techniques for Bilinear Saddle Point Problems and Variational Inequalities with Affine Monotone Operators on Domains Given by Linear Minimization Oracles

    Full text link
    The majority of First Order methods for large-scale convex-concave saddle point problems and variational inequalities with monotone operators are proximal algorithms which at every iteration need to minimize over problem's domain X the sum of a linear form and a strongly convex function. To make such an algorithm practical, X should be proximal-friendly -- admit a strongly convex function with easy to minimize linear perturbations. As a byproduct, X admits a computationally cheap Linear Minimization Oracle (LMO) capable to minimize over X linear forms. There are, however, important situations where a cheap LMO indeed is available, but X is not proximal-friendly, which motivates search for algorithms based solely on LMO's. For smooth convex minimization, there exists a classical LMO-based algorithm -- Conditional Gradient. In contrast, known to us LMO-based techniques for other problems with convex structure (nonsmooth convex minimization, convex-concave saddle point problems, even as simple as bilinear ones, and variational inequalities with monotone operators, even as simple as affine) are quite recent and utilize common approach based on Fenchel-type representations of the associated objectives/vector fields. The goal of this paper is to develop an alternative (and seemingly much simpler) LMO-based decomposition techniques for bilinear saddle point problems and for variational inequalities with affine monotone operators

    General-purpose preconditioning for regularized interior point methods

    Get PDF
    In this paper we present general-purpose preconditioners for regularized augmented systems, and their corresponding normal equations, arising from optimization problems. We discuss positive definite preconditioners, suitable for CG and MINRES. We consider “sparsifications" which avoid situations in which eigenvalues of the preconditioned matrix may become complex. Special attention is given to systems arising from the application of regularized interior point methods to linear or nonlinear convex programming problems.</p

    Multi-layered Energy Management Framework For Extreme Fast Charging Stations Considering Demand Charges, Battery Degradation, And Forecast Uncertainties

    Get PDF
    To achieve a cost-effective and expeditious charging experience for extreme fast charging station (XFCS) owners and electric vehicle (EV) users, the optimal operation of XFCS is crucial. It is however challenging to simultaneously manage the profit from energy arbitrage, the cost of demand charges, and the degradation of a battery energy storage system (BESS) under uncertainties. This paper, therefore, proposes a multi-layered multi-time scale energy flow management framework for an XFCS by considering long- and short-term forecast uncertainties, monthly demand charges reduction, and BESS life degradation. In the proposed approach, an upper scheduling layer (USL) ensures the overall operation economy and yields optimal scheduling of the energy resources on a rolling horizon basis, thereby considering the long-term forecast errors. A lower dispatch layer (LDL) takes the short-term forecast errors into account during the real-time operation of the XFCS. Per the latest research, monthly demand charges can be as high as 90% of the total monthly bills for EV fast charging stations; to this end, this paper takes the first attempt at the reduction of demand charges cost by considering the trade-off between the energy cost and monthly demand charges. Contrasting literature, this work allocates an energy reserve in the BESS stored energy to deal with the impact of short-term forecast errors on the optimized real-time operation of the XFCS. Moreover, degradation modeling considers the trade-off between short-term benefits and long-term BESS life degradation. Lastly, case studies and a comparative analysis prove the efficacy of the proposed framework

    SLOPE - Adaptive variable selection via convex optimization

    Get PDF
    We introduce a new estimator for the vector of coefficients β\beta in the linear model y=Xβ+zy=X\beta+z, where XX has dimensions n×pn\times p with pp possibly larger than nn. SLOPE, short for Sorted L-One Penalized Estimation, is the solution to minbRp12yXb22+λ1b(1)+λ2b(2)++λpb(p),\min_{b\in\mathbb{R}^p}\frac{1}{2}\Vert y-Xb\Vert _{\ell_2}^2+\lambda_1\vert b\vert _{(1)}+\lambda_2\vert b\vert_{(2)}+\cdots+\lambda_p\vert b\vert_{(p)}, where λ1λ2λp0\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_p\ge0 and b(1)b(2)b(p)\vert b\vert_{(1)}\ge\vert b\vert_{(2)}\ge\cdots\ge\vert b\vert_{(p)} are the decreasing absolute values of the entries of bb. This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical 1\ell_1 procedures such as the Lasso. Here, the regularizer is a sorted 1\ell_1 norm, which penalizes the regression coefficients according to their rank: the higher the rank - that is, stronger the signal - the larger the penalty. This is similar to the Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289-300] procedure (BH) which compares more significant pp-values with more stringent thresholds. One notable choice of the sequence {λi}\{\lambda_i\} is given by the BH critical values λBH(i)=z(1iq/2p)\lambda_{\mathrm {BH}}(i)=z(1-i\cdot q/2p), where q(0,1)q\in(0,1) and z(α)z(\alpha) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λBH\lambda_{\mathrm{BH}} provably controls FDR at level qq. Moreover, it also appears to have appreciable inferential properties under more general designs XX while having substantial power, as demonstrated in a series of experiments running on both simulated and real data.Comment: Published at http://dx.doi.org/10.1214/15-AOAS842 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore