research

SLOPE - Adaptive variable selection via convex optimization

Abstract

We introduce a new estimator for the vector of coefficients β\beta in the linear model y=Xβ+zy=X\beta+z, where XX has dimensions n×pn\times p with pp possibly larger than nn. SLOPE, short for Sorted L-One Penalized Estimation, is the solution to minbRp12yXb22+λ1b(1)+λ2b(2)++λpb(p),\min_{b\in\mathbb{R}^p}\frac{1}{2}\Vert y-Xb\Vert _{\ell_2}^2+\lambda_1\vert b\vert _{(1)}+\lambda_2\vert b\vert_{(2)}+\cdots+\lambda_p\vert b\vert_{(p)}, where λ1λ2λp0\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_p\ge0 and b(1)b(2)b(p)\vert b\vert_{(1)}\ge\vert b\vert_{(2)}\ge\cdots\ge\vert b\vert_{(p)} are the decreasing absolute values of the entries of bb. This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical 1\ell_1 procedures such as the Lasso. Here, the regularizer is a sorted 1\ell_1 norm, which penalizes the regression coefficients according to their rank: the higher the rank - that is, stronger the signal - the larger the penalty. This is similar to the Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289-300] procedure (BH) which compares more significant pp-values with more stringent thresholds. One notable choice of the sequence {λi}\{\lambda_i\} is given by the BH critical values λBH(i)=z(1iq/2p)\lambda_{\mathrm {BH}}(i)=z(1-i\cdot q/2p), where q(0,1)q\in(0,1) and z(α)z(\alpha) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λBH\lambda_{\mathrm{BH}} provably controls FDR at level qq. Moreover, it also appears to have appreciable inferential properties under more general designs XX while having substantial power, as demonstrated in a series of experiments running on both simulated and real data.Comment: Published at http://dx.doi.org/10.1214/15-AOAS842 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works