1,748 research outputs found

    An improved cell controller for the aerospace manufacturing

    Get PDF
    The aerospace manufacturing industry is unique in that production typically focuses on high variety and quality but low volume. Existing flexible manufacturing cells are limited to certain types of machines, robots and cells which makes it difficult to introduce any changes. In this paper idea of treating machines, robots, any hardware and software as resource has been introduced. It describes the development of the Flexa Cell Coordinator (FCC), a system that is providing a solution to manage cells and their resources in a new flexible manner. It can control, organise and coordinate between cells and resources and is capable of controlling remote cells because of its distributed nature. It also provides connectivity with company systems e.g., Enterprise Resource Planner (ERP). It is extendable and capable of adding multiple cells inside the system. In FCC resources (e.g., tracker) can also be shared between cells. The paper presents its development and results of initial successful testing

    Enhanced cell controller for aerospace manufacturing

    Get PDF
    Aerospace manufacturing industry is unique in that production typically focuses on high variety and quality but extremely low volume. Manufacturing processes are also sometimes unique and not repeatable and, hence, costly. Production is getting more expensive with the introduction of industrial robots and their cells. This paper describes the development of the Flexa Cell Coordinator (FCC), a system that is providing a solution to manage resources at assembly cell level. It can control, organise and coordinate between the resources and is capable of controlling remote cells and resources because of its distributed nature. It also gives insight of a system to the higher management via its rich reporting facility and connectivity with company systems e.g., Enterprise Resource Planner (ERP). It is able to control various kinds of cells and resources (network based) which are not limited to robots and machines. It is extendable and capable of adding multiple numbers of cells inside the system. It also provides the facility of scheduling the task to avoid the deadlocking in the process. In FCC resources (e.g., tracker) can also be shared between cells

    Design & development of a simulation model to analyse scheduling rules in an FMS in a virtual manufacturing environment : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Manufacturing and Industrial Technology at Massey University

    Get PDF
    Due to the rapid changes in the needs of the customer for new products, the future manufacturing systems must cope with these changes. Hence, the need for the manufacturing systems to support these changes in the products with shorter lead times within a single manufacturing facility. The Virtual Manufacturing System (VMS) is one concept which can assist in meeting these demands. The VMS concept enables the manufacturing system designers to emulate and test the performance of the future manufacturing systems. This research has given an overview of the new concepts of Virtual Manufacturing Systems and Virtual Manufacturing in general. A Virtual Reality Software tool has been used to realise the VMS concept. A Virtual Manufacturing Environment representing a Flexible Manufacturing System (FMS) has been modelled. A simulation control language is employed for developing simulation control logics and decision making control logics for the development of the FMS model. The modelled FMS is implemented and tested through simulation experiments. The testing is done by analysing the traditional scheduling rules in a manufacturing facility. Average Machine Utilisation, Mean Flow Time, Average Queue Lengths and the System Production Rate are measured as the System Performance Measures for the evaluation of the scheduling rules. This research has identified that the Virtual Manufacturing Software is a powerful tool which can identify optimum configurations and highlight potential problems before a final and expensive manufacturing system is established physically

    Planning transport sequences for flexible manufacturing systems

    Get PDF
    When designing a manufacturing system it is important to plan what the system should do. One important activity in most manufacturing systems is to transport products or resources between different positions. In a flexible manufacturing system it can be challenging to design and plan these transport operations due to their complex logical behavior. This paper presents a method that identifies, creates and visualizes these transport operations based on inputs from a standard virtual manufacturing tool and a high level product operation recipe. The planning of the created transport operations is transformed into a problem of finding a non-blocking solution for a discrete model of the product refinement

    Space Station Freedom pressurized element interior design process

    Get PDF
    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described

    A study of concept options for the evolution of Space Station Freedom

    Get PDF
    Two conceptual evolution configurations for Space Station Freedom, a research and development configuration, and a transportation node configuration are described and analyzed. Results of pertinent analyses of mass properties, attitude control, microgravity, orbit lifetime, and reboost requirements are provided along with a description of these analyses. Also provided are brief descriptions of the elements and systems that comprise these conceptual configurations

    Research in complex materials handling and assembly systems, 1981

    Get PDF
    "August 1981"Bibliography: leaf [5]"National Science Foundation Grant DAR78-17826"S.B. Gershwin, J.G. Kimemia, E.R. Ducot

    Detailed design of product oriented manufacturing systems

    Get PDF
    This paper describes a procedure for the detailed and repetitive design of manufacturing systems within an approach of constantly fitting production system configuration to the varying production needs of products and, therefore, designing Product Oriented Manufacturing Systems – POMS. The detailed design procedure depart from a set of conceptual manufacturing cell configurations and develops from there, through conceptual cell and workstation instantiation, with basis on available methods, the required manufacturing system and control mechanisms for a product or a family of similar products.Fundação para a Ciência e a Tecnologia (FCT

    Timed petri net simulation of flexible manufacturing systems

    Get PDF
    Standard Petri nets have been used to model and analyze Flexible Manufacturing Systems. The timed Petri net, which can incorporate the time delay associated with manufacturing events, provides additional information about real time behavior of practical systems. The Timed Petri Net Simulation Tool, a highly interactive graphical tool, is applied to simulate the modeled flexible manufacturing systems. Timed Petri net models are experimented with. Machine utilization data and throughput are obtained. Analysis of the results shows that the system performance can be optimized by choosing proper parameters
    • …
    corecore