4,531,311 research outputs found
Endogeneity in quantile regression models: a control function approach
This paper considers a linear triangular simultaneous equations model with conditional quantile restrictions. The paper adjusts for endogeneity by adopting a control function approach and presents a simple two-step estimator that exploits the partially linear structure of the model. The first step consists of estimation of the residuals of the reduced-form equation for the endogenous explanatory variable. The second step is series estimation of the primary equation with the reduced-form residual included nonparametrically as an additional explanatory variable. This paper imposes no functional form restrictions on the stochastic relationship between the reduced-form residual and the disturbance term in the primary equation conditional on observable explanatory variables. The paper presents regularity conditions for consistency and asymptotic normality of the two-step estimator. In addition, the paper provides some discussions on related estimation methods in the literature and on possible extensions and limitations of the estimation approach. Finally, the numerical performance and usefulness of the estimator are illustrated by the results of Monte Carlo experiments and two empirical examples, demand for fish and returns to schooling.
Stability for Receding-horizon Stochastic Model Predictive Control
A stochastic model predictive control (SMPC) approach is presented for
discrete-time linear systems with arbitrary time-invariant probabilistic
uncertainties and additive Gaussian process noise. Closed-loop stability of the
SMPC approach is established by appropriate selection of the cost function.
Polynomial chaos is used for uncertainty propagation through system dynamics.
The performance of the SMPC approach is demonstrated using the Van de Vusse
reactions.Comment: American Control Conference (ACC) 201
Distributed Collision-Free Motion Coordination on a Sphere: A Conic Control Barrier Function Approach
This letter studies a distributed collision avoidance control problem for a group of rigid bodies on a sphere. A rigid body network, consisting of multiple rigid bodies constrained to a spherical surface and an interconnection topology, is first formulated. In this formulation, it is shown that motion coordination on a sphere is equivalent to attitude coordination on the 3-dimensional Special Orthogonal group. Then, an angle-based control barrier function that can handle a geodesic distance constraint on a spherical surface is presented. The proposed control barrier function is then extended to a relative motion case and applied to a collision avoidance problem for a rigid body network operating on a sphere. Each rigid body chooses its control input by solving a distributed optimization problem to achieve a nominal distributed motion coordination strategy while satisfying constraints for collision avoidance. The proposed collision-free motion coordination law is validated via simulation
- …
