52 research outputs found

    Design and assessment of a multiple sensor fault tolerant robust control system

    Get PDF
    This paper presents an enhanced robust control design structure to realise fault tolerance towards sensor faults suitable for multi-input-multi-output (MIMO) systems implementation. The proposed design permits fault detection and controller elements to be designed with considerations to stability and robustness towards uncertainties besides multiple faults environment on a common mathematical platform. This framework can also cater to systems requiring fast responses. A design example is illustrated with a fast, multivariable and unstable system, that is, the double inverted pendulum system. Results indicate the potential of this design framework to handle fast systems with multiple sensor faults

    A linear control design structure to maintain loop properties during limit operation in a multi-nozzle turbofan engine

    Get PDF
    The implementation of multi-variable control systems on turbofan engines requires the use of limit protection to maintain safe engine operation. Since a turbofan engine typically encounters limits during transient operation, the use of a limit protection scheme that modifies the feedback loop may void the desired 'guarantees' associated with linear multi-variable control design methods, necessitating considerable simulation to validate the control with limited protection. An alternative control design structure is proposed that maintains the desired linear feedback properties when certain safety limits are encountered by moving the limit protection scheme outside the feedback loop. This proposed structure is compared to a structure with a limit protection scheme that modifies the feedback loop properties. The two design structures are compared using both linear and nonlinear simulations. The evaluation emphasizes responses where the fan surge margin limit is encountered

    Beyond the Waterbed Effect: Development of Fractional Order CRONE Control with Non-Linear Reset

    Full text link
    In this paper a novel reset control synthesis method is proposed: CRONE reset control, combining a robust fractional CRONE controller with non-linear reset control to overcome waterbed effect. In CRONE control, robustness is achieved by creation of constant phase behaviour around bandwidth with the use of fractional operators, also allowing more freedom in shaping the open-loop frequency response. However, being a linear controller it suffers from the inevitable trade-off between robustness and performance as a result of the waterbed effect. Here reset control is introduced in the CRONE design to overcome the fundamental limitations. In the new controller design, reset phase advantage is approximated using describing function analysis and used to achieve better open-loop shape. Sufficient quadratic stability conditions are shown for the designed CRONE reset controllers and the control design is validated on a Lorentz-actuated nanometre precision stage. It is shown that for similar phase margin, better performance in terms of reference-tracking and noise attenuation can be achieved.Comment: American Control Conference 201

    An Innovative Feedback Controls Design Approach for Aero Engines

    Get PDF
    The paper describes a feedback controls design approach for a generic regional jet turbofan engine, which can be adapted to aero engines in general. To demonstrate this approach, linear models for control design are generated at different operating conditions from a full envelope nonlinear simulation created with the NASA Glenn Research Center-developed Toolbox for the Modeling and Analysis of Thermodynamic Systems. The primary objective is to design a single feedback controller that achieves good performance, without the need of developing scheduled control designs to cover the engine operating envelope. An additional objective is to progressively design more robust controllers that can perform under large variations in plant dynamics to also cover control for engine limits and potentially for some off nominal or even damaged conditions

    THE SUSTAINABLE GROUNDWATER MANAGEMENT ACT (SGMA): LONG OVERDUE, BUT IS IT LIVING UP TO ITS POTENTIAL?

    Get PDF
    This thesis discusses the Sustainable Groundwater Management Act (SGMA), California’s first statewide groundwater regulatory legislation. The act established the formation of groundwater basins and local governing bodies called Groundwater Sustainability Agencies (GSAs) which are tasked with creating Groundwater Sustainability Plans (GSPs). More specifically, this thesis examines how the structure of GSAs affects stakeholder accessibility, community engagement, and transparency. Through a collection of four interviews as well as the use of primary and secondary sources, this paper will explore the potential, and the ultimate shortcomings of SGMAs transparency, particularly in ensuring clean, safe water to historically disenfranchised communities. Using Kern and Santa Cruz Mid-County Basins as case studies, this thesis explores the diversity of groundwater struggles across the state, the importance of GSA accessibility, and valuable strategies for ensuring accessibility. The differences between these two case studies explain the difficulty of statewide groundwater regulation and the potential for the local control design structure central to SGMA legislation. However, it seems that the complex governing structure of Kern is one of the factors limiting the engagement of particular stakeholders. Additionally, the paper will provide recommendations from the community outreach methods found in Santa Cruz Mid-County to be applied at a larger scale in Kern Basin. Transparency and accessibility in any governmental decision-making process are important but particularly in one which may determine the long-term water safety and access to communities across the state

    The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    Get PDF
    A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach

    Integrated flight/propulsion control system design based on a centralized approach

    Get PDF
    An integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statically unstable, fighter aircraft. A centralized compensator based on the Linear Quadratic Gaussian/Loop Transfer Recovery methodology is first obtained to satisfy the feedback loop performance and robustness specificiations. This high-order centralized compensator is then partitioned into airframe and engine sub-controllers based on modal controllability/observability for the compensator modes. The order of the sub-controllers is then reduced using internally-balanced realization techniques and the sub-controllers are simplified by neglecting the insignificant feedbacks. These sub-controllers have the advantage that they can be implemented as separate controllers on the airframe and the engine while still retaining the important performance and stability characteristics of the full-order centralized compensator. Command prefilters are then designed for the closed-loop system with the simplified sub-controllers to obtain the desired system response to airframe and engine command inputs, and the overall system performance evaluation results are presented
    corecore