6 research outputs found

    Contrastive Learning for Lifted Networks

    Full text link
    In this work we address supervised learning of neural networks via lifted network formulations. Lifted networks are interesting because they allow training on massively parallel hardware and assign energy models to discriminatively trained neural networks. We demonstrate that the training methods for lifted networks proposed in the literature have significant limitations and show how to use a contrastive loss to address those limitations. We demonstrate that this contrastive training approximates back-propagation in theory and in practice and that it is superior to the training objective regularly used for lifted networks.Comment: 9 pages, BMVC 201

    Lifted Regression/Reconstruction Networks

    Get PDF
    In this work we propose lifted regression/reconstruction networks(LRRNs), which combine lifted neural networks with a guaranteed Lipschitz continuity property for the output layer. Lifted neural networks explicitly optimize an energy model to infer the unit activations and therefore—in contrast to standard feed-forward neural networks—allow bidirectional feedback between layers. So far lifted neural networks have been modelled around standard feed-forward architectures. We propose to take further advantage of the feedback property by letting the layers simultaneously perform regression and reconstruction. The resulting lifted network architecture allows to control the desired amount of Lipschitz continuity, which is an important feature to obtain adversarially robust regression and classification methods. We analyse and numerically demonstrate applications for unsupervised and supervised learnin

    Lifted Regression/Reconstruction Networks

    Get PDF
    In this work we propose lifted regression/reconstruction networks (LRRNs), which combine lifted neural networks with a guaranteed Lipschitz continuity property for the output layer. Lifted neural networks explicitly optimize an energy model to infer the unit activations and therefore---in contrast to standard feed-forward neural networks---allow bidirectional feedback between layers. So far lifted neural networks have been modelled around standard feed-forward architectures. We propose to take further advantage of the feedback property by letting the layers simultaneously perform regression and reconstruction. The resulting lifted network architecture allows to control the desired amount of Lipschitz continuity, which is an important feature to obtain adversarially robust regression and classification methods. We analyse and numerically demonstrate applications for unsupervised and supervised learning.Comment: 12 pages, 8 figure

    Truncated Inference for Latent Variable Optimization Problems: Application to Robust Estimation and Learning

    Full text link
    Optimization problems with an auxiliary latent variable structure in addition to the main model parameters occur frequently in computer vision and machine learning. The additional latent variables make the underlying optimization task expensive, either in terms of memory (by maintaining the latent variables), or in terms of runtime (repeated exact inference of latent variables). We aim to remove the need to maintain the latent variables and propose two formally justified methods, that dynamically adapt the required accuracy of latent variable inference. These methods have applications in large scale robust estimation and in learning energy-based models from labeled data.Comment: 16 page

    Contrastive learning for lifted networks

    No full text
    In this work we address supervised learning via lifted network formulations. Lifted networks are interesting because they allow training on massively parallel hardware and assign energy models to discriminatively trained neural networks. We demonstrate that training methods for lifted networks proposed in the literature have significant limitations, and therefore we propose to use a contrastive loss to train lifted networks. We show that this contrastive training approximates back-propagation in theory and in practice, and that it is superior to the regular training objective for lifted networks
    corecore