112 research outputs found

    Learning to Reuse Distractors to support Multiple Choice Question Generation in Education

    Full text link
    Multiple choice questions (MCQs) are widely used in digital learning systems, as they allow for automating the assessment process. However, due to the increased digital literacy of students and the advent of social media platforms, MCQ tests are widely shared online, and teachers are continuously challenged to create new questions, which is an expensive and time-consuming task. A particularly sensitive aspect of MCQ creation is to devise relevant distractors, i.e., wrong answers that are not easily identifiable as being wrong. This paper studies how a large existing set of manually created answers and distractors for questions over a variety of domains, subjects, and languages can be leveraged to help teachers in creating new MCQs, by the smart reuse of existing distractors. We built several data-driven models based on context-aware question and distractor representations, and compared them with static feature-based models. The proposed models are evaluated with automated metrics and in a realistic user test with teachers. Both automatic and human evaluations indicate that context-aware models consistently outperform a static feature-based approach. For our best-performing context-aware model, on average 3 distractors out of the 10 shown to teachers were rated as high-quality distractors. We create a performance benchmark, and make it public, to enable comparison between different approaches and to introduce a more standardized evaluation of the task. The benchmark contains a test of 298 educational questions covering multiple subjects & languages and a 77k multilingual pool of distractor vocabulary for future research.Comment: 24 pages and 4 figures Accepted for publication in IEEE Transactions on Learning technologie

    Large Language Models for Social Networks: Applications, Challenges, and Solutions

    Full text link
    Large Language Models (LLMs) are transforming the way people generate, explore, and engage with content. We study how we can develop LLM applications for online social networks. Despite LLMs' successes in other domains, it is challenging to develop LLM-based products for social networks for numerous reasons, and it has been relatively under-reported in the research community. We categorize LLM applications for social networks into three categories. First is knowledge tasks where users want to find new knowledge and information, such as search and question-answering. Second is entertainment tasks where users want to consume interesting content, such as getting entertaining notification content. Third is foundational tasks that need to be done to moderate and operate the social networks, such as content annotation and LLM monitoring. For each task, we share the challenges we found, solutions we developed, and lessons we learned. To the best of our knowledge, this is the first comprehensive paper about developing LLM applications for social networks

    Text Summarization Across High and Low-Resource Settings

    Get PDF
    Natural language processing aims to build automated systems that can both understand and generate natural language textual data. As the amount of textual data available online has increased exponentially, so has the need for intelligence systems to comprehend and present it to the world. As a result, automatic text summarization, the process by which a text\u27s salient content is automatically distilled into a concise form, has become a necessary tool. Automatic text summarization approaches and applications vary based on the input summarized, which may constitute single or multiple documents of different genres. Furthermore, the desired output style may consist of a sentence or sub-sentential units chosen directly from the input in extractive summarization or a fusion and paraphrase of the input document in abstractive summarization. Despite differences in the above use-cases, specific themes, such as the role of large-scale data for training these models, the application of summarization models in real-world scenarios, and the need for adequately evaluating and comparing summaries, are common across these settings. This dissertation presents novel data and modeling techniques for deep neural network-based summarization models trained across high-resource (thousands of supervised training examples) and low-resource (zero to hundreds of supervised training examples) data settings and a comprehensive evaluation of the model and metric progress in the field. We examine both Recurrent Neural Network (RNN)-based and Transformer-based models to extract and generate summaries from the input. To facilitate the training of large-scale networks, we introduce datasets applicable for multi-document summarization (MDS) for pedagogical applications and for news summarization. While the high-resource settings allow models to advance state-of-the-art performance, the failure of such models to adapt to settings outside of that in which it was initially trained requires smarter use of labeled data and motivates work in low-resource summarization. To this end, we propose unsupervised learning techniques for both extractive summarization in question answering, abstractive summarization on distantly-supervised data for summarization of community question answering forums, and abstractive zero and few-shot summarization across several domains. To measure the progress made along these axes, we revisit the evaluation of current summarization models. In particular, this dissertation addresses the following research objectives: 1) High-resource Summarization. We introduce datasets for multi-document summarization, focusing on pedagogical applications for NLP, news summarization, and Wikipedia topic summarization. Large-scale datasets allow models to achieve state-of-the-art performance on these tasks compared to prior modeling techniques, and we introduce a novel model to reduce redundancy. However, we also examine how models trained on these large-scale datasets fare when applied to new settings, showing the need for more generalizable models. 2) Low-resource Summarization. While high-resource summarization improves model performance, for practical applications, data-efficient models are necessary. We propose a pipeline for creating synthetic training data for training extractive question-answering models, a form of query-based extractive summarization with short-phrase summaries. In other work, we propose an automatic pipeline for training a multi-document summarizer in answer summarization on community question-answering forums without labeled data. Finally, we push the boundaries of abstractive summarization model performance when little or no training data is available across several domains. 3) Automatic Summarization Evaluation. To understand the extent of progress made across recent modeling techniques and better understand the current evaluation protocols, we examine the current metrics used to compare summarization output quality across 12 metrics across 23 deep neural network models and propose better-motivated summarization evaluation guidelines as well as point to open problems in summarization evaluation

    Deep neural networks for identification of sentential relations

    Get PDF
    Natural language processing (NLP) is one of the most important technologies in the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate mostly in language: web search, advertisement, emails, customer service, language translation, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications. Recently, deep learning approaches have obtained exciting performance across a broad array of NLP tasks. These models can often be trained in an end-to-end paradigm without traditional, task-specific feature engineering. This dissertation focuses on a specific NLP task --- sentential relation identification. Successfully identifying the relations of two sentences can contribute greatly to some downstream NLP problems. For example, in open-domain question answering, if the system can recognize that a new question is a paraphrase of a previously observed question, the known answers can be returned directly, avoiding redundant reasoning. For another, it is also helpful to discover some latent knowledge, such as inferring ``the weather is good today'' from another description ``it is sunny today''. This dissertation presents some deep neural networks (DNNs) which are developed to handle this sentential relation identification problem. More specifically, this problem is addressed by this dissertation in the following three aspects. (i) Sentential relation representation is built on the matching between phrases of arbitrary lengths. Stacked Convolutional Neural Networks (CNNs) are employed to model the sentences, so that each filter can cover a local phrase, and filters in lower level span shorter phrases and filters in higher level span longer phrases. CNNs in stack enable to model sentence phrases in different granularity and different abstraction. (ii) Phrase matches contribute differently to the tasks. This motivates us to propose an attention mechanism in CNNs for these tasks, differing from the popular research of attention mechanisms in Recurrent Neural Networks (RNNs). Attention mechanisms are implemented in both convolution layer as well as pooling layer in deep CNNs, in order to figure out automatically which phrase of one sentence matches a specific phrase of the other sentence. These matches are supposed to be indicative to the final decision. Another contribution in terms of attention mechanism is inspired by the observation that some sentential relation identification task, like answer selection for multi-choice question answering, is mainly determined by phrase alignments of stronger degree; in contrast, some tasks such as textual entailment benefit more from the phrase alignments of weaker degree. This motivates us to propose a dynamic ``attentive pooling'' to select phrase alignments of different intensities for different task categories. (iii) In certain scenarios, sentential relation can only be successfully identified within specific background knowledge, such as the multi-choice question answering based on passage comprehension. In this case, the relation between two sentences (question and answer candidate) depends on not only the semantics in the two sentences, but also the information encoded in the given passage. Overall, the work in this dissertation models sentential relations in hierarchical DNNs, different attentions and different background knowledge. All systems got state-of-the-art performances in representative tasks.Die Verarbeitung natürlicher Sprachen (engl.: natural language processing - NLP) ist eine der wichtigsten Technologien des Informationszeitalters. Weiterhin ist das Verstehen komplexer sprachlicher Ausdrücke ein essentieller Teil künstlicher Intelligenz. Anwendungen von NLP sind überall zu finden, da Menschen haupt\-säch\-lich über Sprache kommunizieren: Internetsuchen, Werbung, E-Mails, Kundenservice, Übersetzungen, etc. Es gibt eine große Anzahl Tasks und Modelle des maschinellen Lernens für NLP-Anwendungen. In den letzten Jahren haben Deep-Learning-Ansätze vielversprechende Ergebnisse für eine große Anzahl verschiedener NLP-Tasks erzielt. Diese Modelle können oft end-to-end trainiert werden, kommen also ohne auf den Task zugeschnittene Feature aus. Diese Dissertation hat einen speziellen NLP-Task als Fokus: Sententielle Relationsidentifizierung. Die Beziehung zwischen zwei Sätzen erfolgreich zu erkennen, kann die Performanz für nachfolgende NLP-Probleme stark verbessern. Für open-domain question answering, zum Beispiel, kann ein System, das erkennt, dass eine neue Frage eine Paraphrase einer bereits gesehenen Frage ist, die be\-kann\-te Antwort direkt zurückgeben und damit mehrfaches Schlussfolgern vermeiden. Zudem ist es auch hilfreich, zu Grunde liegendes Wissen zu entdecken, so wie das Schließen der Tatsache "das Wetter ist gut" aus der Beschreibung "es ist heute sonnig". Diese Dissertation stellt einige tiefe neuronale Netze (eng.: deep neural networks - DNNs) vor, die speziell für das Problem der sententiellen Re\-la\-tions\-i\-den\-ti\-fi\-zie\-rung entwickelt wurden. Im Speziellen wird dieses Problem in dieser Dissertation unter den folgenden drei Aspekten behandelt: (i) Sententielle Relationsrepr\"{a}sentationen basieren auf einem Matching zwischen Phrasen beliebiger Länge. Tiefe convolutional neural networks (CNNs) werden verwendet, um diese Sätze zu modellieren, sodass jeder Filter eine lokale Phrase abdecken kann, wobei Filter in niedrigeren Schichten kürzere und Filter in höheren Schichten längere Phrasen umfassen. Tiefe CNNs machen es möglich, Sätze in unterschiedlichen Granularitäten und Abstraktionsleveln zu modellieren. (ii) Matches zwischen Phrasen tragen unterschiedlich zu unterschiedlichen Tasks bei. Das motiviert uns, einen Attention-Mechanismus für CNNs für diese Tasks einzuführen, der sich von dem bekannten Attention-Mechanismus für recurrent neural networks (RNNs) unterscheidet. Wir implementieren Attention-Mechanismen sowohl im convolution layer als auch im pooling layer tiefer CNNs, um herauszufinden, welche Phrasen eines Satzes bestimmten Phrasen eines anderen Satzes entsprechen. Wir erwarten, dass solche Matches die finale Entscheidung stark beeinflussen. Ein anderer Beitrag zu Attention-Mechanismen wurde von der Beobachtung inspiriert, dass einige sententielle Relationsidentifizierungstasks, zum Beispiel die Auswahl einer Antwort für multi-choice question answering hauptsächlich von Phrasen\-a\-lignie\-rungen stärkeren Grades bestimmt werden. Im Gegensatz dazu profitieren andere Tasks wie textuelles Schließen mehr von Phrasenalignierungen schwächeren Grades. Das motiviert uns, ein dynamisches "attentive pooling" zu entwickeln, um Phrasenalignierungen verschiedener Stärken für verschiedene Taskkategorien auszuwählen. (iii) In bestimmten Szenarien können sententielle Relationen nur mit entsprechendem Hintergrundwissen erfolgreich identifiziert werden, so wie multi-choice question answering auf der Grundlage des Verständnisses eines Absatzes. In diesem Fall hängt die Relation zwischen zwei Sätzen (der Frage und der möglichen Antwort) nicht nur von der Semantik der beiden Sätze, sondern auch von der in dem gegebenen Absatz enthaltenen Information ab. Insgesamt modellieren die in dieser Dissertation enthaltenen Arbeiten sententielle Relationen in hierarchischen DNNs, mit verschiedenen Attention-Me\-cha\-nis\-men und wenn unterschiedliches Hintergrundwissen zur Verf\ {u}gung steht. Alle Systeme erzielen state-of-the-art Ergebnisse für die entsprechenden Tasks

    QAScore -- An Unsupervised Unreferenced Metric for the Question Generation Evaluation

    Full text link
    Question Generation (QG) aims to automate the task of composing questions for a passage with a set of chosen answers found within the passage. In recent years, the introduction of neural generation models has resulted in substantial improvements of automatically generated questions in terms of quality, especially compared to traditional approaches that employ manually crafted heuristics. However, the metrics commonly applied in QG evaluations have been criticized for their low agreement with human judgement. We therefore propose a new reference-free evaluation metric that has the potential to provide a better mechanism for evaluating QG systems, called QAScore. Instead of fine-tuning a language model to maximize its correlation with human judgements, QAScore evaluates a question by computing the cross entropy according to the probability that the language model can correctly generate the masked words in the answer to that question. Furthermore, we conduct a new crowd-sourcing human evaluation experiment for the QG evaluation to investigate how QAScore and other metrics can correlate with human judgements. Experiments show that QAScore obtains a stronger correlation with the results of our proposed human evaluation method compared to existing traditional word-overlap-based metrics such as BLEU and ROUGE, as well as the existing pretrained-model-based metric BERTScore.Comment: 19 pages, 5 figures, 7 table

    Supporting Exploratory Search Tasks Through Alternative Representations of Information

    Get PDF
    Information seeking is a fundamental component of many of the complex tasks presented to us, and is often conducted through interactions with automated search systems such as Web search engines. Indeed, the ubiquity of Web search engines makes information so readily available that people now often turn to the Web for all manners of information seeking needs. Furthermore, as the range of online information seeking tasks grows, more complex and open-ended search activities have been identified. One type of complex search activities that is of increasing interest to researchers is exploratory search, where the goal involves "learning" or "investigating", rather than simply "looking-up". Given the massive increase in information availability and the use of online search for tasks beyond simply looking-up, researchers have noted that it becomes increasingly challenging for users to effectively leverage the available online information for complex and open-ended search activities. One of the main limitations of the current document retrieval paradigm offered by modern search engines is that it provides a ranked list of documents as a response to the searcher’s query with no further support for locating and synthesizing relevant information. Therefore, the searcher is left to find and make sense of useful information in a massive information space that lacks any overview or conceptual organization. This thesis explores the impact of alternative representations of search results on user behaviors and outcomes during exploratory search tasks. Our inquiry is inspired by the premise that exploratory search tasks require sensemaking, and that sensemaking involves constructing and interacting with representations of knowledge. As such, in order to provide the searchers with more support in performing exploratory activities, there is a need to move beyond the current document retrieval paradigm by extending the support for locating and externalizing semantic information from textual documents and by providing richer representations of the extracted information coupled with mechanisms for accessing and interacting with the information in ways that support exploration and sensemaking. This dissertation presents a series of discrete research endeavour to explore different aspects of providing information and presenting this information in ways that both extraction and assimilation of relevant information is supported. We first address the problem of extracting information – that is more granular than documents – as a response to a user's query by developing a novel information extraction system to represent documents as a series of entity-relationship tuples. Next, through a series of designing and evaluating alternative representations of search results, we examine how this extracted information can be represented such that it extends the document-based search framework's support for exploratory search tasks. Finally, we assess the ecological validity of this research by exploring error-prone representations of search results and how they impact a searcher's ability to leverage our representations to perform exploratory search tasks. Overall, this research contributes towards designing future search systems by providing insights into the efficacy of alternative representations of search results for supporting exploratory search activities, culminating in a novel hybrid representation called Hierarchical Knowledge Graphs (HKG). To this end we propose and develop a framework that enables a reliable investigation of the impact of different representations and how they are perceived and utilized by information seekers

    Cross-Platform Question Answering in Social Networking Services

    Get PDF
    The last two decades have made the Internet a major source for knowledge seeking. Several platforms have been developed to find answers to one's questions such as search engines and online encyclopedias. The wide adoption of social networking services has pushed the possibilities even further by giving people the opportunity to stimulate the generation of answers that are not already present on the Internet. Some of these social media services are primarily community question answering (CQA) sites, while the others have a more general audience but can also be used to ask and answer questions. The choice of a particular platform (e.g., a CQA site, a microblogging service, or a search engine) by some user depends on several factors such as awareness of available resources and expectations from different platforms, and thus will sometimes be suboptimal. Hence, we introduce \emph{cross-platform question answering}, a framework that aims to improve our ability to satisfy complex information needs by returning answers from different platforms, including those where the question has not been originally asked. We propose to build this core capability by defining a general architecture for designing and implementing real-time services for answering naturally occurring questions. This architecture consists of four key components: (1) real-time detection of questions, (2) a set of platforms from which answers can be returned, (3) question processing by the selected answering systems, which optionally involves question transformation when questions are answered by services that enforce differing conventions from the original source, and (4) answer presentation, including ranking, merging, and deciding whether to return the answer. We demonstrate the feasibility of this general architecture by instantiating a restricted development version in which we collect the questions from one CQA website, one microblogging service or directly from the asker, and find answers from among some subset of those CQA and microblogging services. To enable the integration of new answering platforms in our architecture, we introduce a framework for automatic evaluation of their effectiveness

    Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity

    Full text link
    This survey addresses the crucial issue of factuality in Large Language Models (LLMs). As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital. We define the Factuality Issue as the probability of LLMs to produce content inconsistent with established facts. We first delve into the implications of these inaccuracies, highlighting the potential consequences and challenges posed by factual errors in LLM outputs. Subsequently, we analyze the mechanisms through which LLMs store and process facts, seeking the primary causes of factual errors. Our discussion then transitions to methodologies for evaluating LLM factuality, emphasizing key metrics, benchmarks, and studies. We further explore strategies for enhancing LLM factuality, including approaches tailored for specific domains. We focus two primary LLM configurations standalone LLMs and Retrieval-Augmented LLMs that utilizes external data, we detail their unique challenges and potential enhancements. Our survey offers a structured guide for researchers aiming to fortify the factual reliability of LLMs.Comment: 62 pages; 300+ reference
    • …
    corecore