215 research outputs found

    Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

    Full text link
    Accurate color reproduction is important in many applications of 3D printing, from design prototypes to 3D color copies or portraits. Although full color is available via other technologies, multi-jet printers have greater potential for graphical 3D printing, in terms of reproducing complex appearance properties. However, to date these printers cannot produce full color, and doing so poses substantial technical challenges, from the shear amount of data to the translucency of the available color materials. In this paper, we propose an error diffusion halftoning approach to achieve full color with multi-jet printers, which operates on multiple isosurfaces or layers within the object. We propose a novel traversal algorithm for voxel surfaces, which allows the transfer of existing error diffusion algorithms from 2D printing. The resulting prints faithfully reproduce colors, color gradients and fine-scale details.Comment: 15 pages, 14 figures; includes supplemental figure

    Structure-aware halftoning

    Get PDF
    our result faithfully preserves the texture details as well as the local tone. All images have the same resolution of 445×377. This paper presents an optimization-based halftoning technique that preserves the structure and tone similarities between the original and the halftone images. By optimizing an objective function consisting of both the structure and the tone metrics, the generated halftone images preserve visually sensitive texture details as well as the local tone. It possesses the blue-noise property and does not introduce annoying patterns. Unlike the existing edge-enhancement halftoning, the proposed method does not suffer from the deficiencies of edge detector. Our method is tested on various types of images. In multiple experiments and the user study, our method consistently obtains the best scores among all tested methods.

    Efficient Halftoning via Deep Reinforcement Learning

    Full text link
    Halftoning aims to reproduce a continuous-tone image with pixels whose intensities are constrained to two discrete levels. This technique has been deployed on every printer, and the majority of them adopt fast methods (e.g., ordered dithering, error diffusion) that fail to render structural details, which determine halftone's quality. Other prior methods of pursuing visual pleasure by searching for the optimal halftone solution, on the contrary, suffer from their high computational cost. In this paper, we propose a fast and structure-aware halftoning method via a data-driven approach. Specifically, we formulate halftoning as a reinforcement learning problem, in which each binary pixel's value is regarded as an action chosen by a virtual agent with a shared fully convolutional neural network (CNN) policy. In the offline phase, an effective gradient estimator is utilized to train the agents in producing high-quality halftones in one action step. Then, halftones can be generated online by one fast CNN inference. Besides, we propose a novel anisotropy suppressing loss function, which brings the desirable blue-noise property. Finally, we find that optimizing SSIM could result in holes in flat areas, which can be avoided by weighting the metric with the contone's contrast map. Experiments show that our framework can effectively train a light-weight CNN, which is 15x faster than previous structure-aware methods, to generate blue-noise halftones with satisfactory visual quality. We also present a prototype of deep multitoning to demonstrate the extensibility of our method

    Layer Decomposition Learning Based on Gaussian Convolution Model and Residual Deblurring for Inverse Halftoning

    Full text link
    Layer decomposition to separate an input image into base and detail layers has been steadily used for image restoration. Existing residual networks based on an additive model require residual layers with a small output range for fast convergence and visual quality improvement. However, in inverse halftoning, homogenous dot patterns hinder a small output range from the residual layers. Therefore, a new layer decomposition network based on the Gaussian convolution model (GCM) and structure-aware deblurring strategy is presented to achieve residual learning for both the base and detail layers. For the base layer, a new GCM-based residual subnetwork is presented. The GCM utilizes a statistical distribution, in which the image difference between a blurred continuous-tone image and a blurred halftoned image with a Gaussian filter can result in a narrow output range. Subsequently, the GCM-based residual subnetwork uses a Gaussian-filtered halftoned image as input and outputs the image difference as residual, thereby generating the base layer, i.e., the Gaussian-blurred continuous-tone image. For the detail layer, a new structure-aware residual deblurring subnetwork (SARDS) is presented. To remove the Gaussian blurring of the base layer, the SARDS uses the predicted base layer as input and outputs the deblurred version. To more effectively restore image structures such as lines and texts, a new image structure map predictor is incorporated into the deblurring network to induce structure-adaptive learning. This paper provides a method to realize the residual learning of both the base and detail layers based on the GCM and SARDS. In addition, it is verified that the proposed method surpasses state-of-the-art methods based on U-Net, direct deblurring networks, and progressively residual networks

    Perceptual error optimization for Monte Carlo rendering

    Full text link
    Realistic image synthesis involves computing high-dimensional light transport integrals which in practice are numerically estimated using Monte Carlo integration. The error of this estimation manifests itself in the image as visually displeasing aliasing or noise. To ameliorate this, we develop a theoretical framework for optimizing screen-space error distribution. Our model is flexible and works for arbitrary target error power spectra. We focus on perceptual error optimization by leveraging models of the human visual system's (HVS) point spread function (PSF) from halftoning literature. This results in a specific optimization problem whose solution distributes the error as visually pleasing blue noise in image space. We develop a set of algorithms that provide a trade-off between quality and speed, showing substantial improvements over prior state of the art. We perform evaluations using both quantitative and perceptual error metrics to support our analysis, and provide extensive supplemental material to help evaluate the perceptual improvements achieved by our methods
    • …
    corecore