110 research outputs found

    Two Decades of Colorization and Decolorization for Images and Videos

    Full text link
    Colorization is a computer-aided process, which aims to give color to a gray image or video. It can be used to enhance black-and-white images, including black-and-white photos, old-fashioned films, and scientific imaging results. On the contrary, decolorization is to convert a color image or video into a grayscale one. A grayscale image or video refers to an image or video with only brightness information without color information. It is the basis of some downstream image processing applications such as pattern recognition, image segmentation, and image enhancement. Different from image decolorization, video decolorization should not only consider the image contrast preservation in each video frame, but also respect the temporal and spatial consistency between video frames. Researchers were devoted to develop decolorization methods by balancing spatial-temporal consistency and algorithm efficiency. With the prevalance of the digital cameras and mobile phones, image and video colorization and decolorization have been paid more and more attention by researchers. This paper gives an overview of the progress of image and video colorization and decolorization methods in the last two decades.Comment: 12 pages, 19 figure

    wEscore: quality assessment method of multichannel image visualization with regard to angular resolution

    Get PDF
    This work considers the problem of quality assessment of multichannel image visualization methods. One approach to such an assessment, the Escore quality measure, is studied. This measure, initially proposed for decolorization methods evaluation, can be generalized for the assessment of hyperspectral image visualization methods. It is shown that Escore does not account for the loss of local contrast at the supra-pixel scale. The sensitivity to the latter in humans depends on the observation conditions, so we propose a modified wEscore measure which includes the parameters allowing for the adjustment of the local contrast scale based on the angular resolution of the images. We also describe the adjustment of wEscore parameters for the evaluation of known decolorization algorithms applied to the images from the COLOR250 and the Cadik datasets with given observational conditions. When ranking the results of these algorithms and comparing it to the ranking based on human perception, wEscore turned out to be more accurate than Escore.This work was supported by Russian Science Foundation (Project No. 20-61-47089)

    Preserving Perceptual Contrast in Decolorization with Optimized Color Orders

    Get PDF
    Converting a color image to a grayscale image, namely decolorization, is an important process for many real-world applications. Previous methods build contrast loss functions to minimize the contrast differences between the color images and the resultant grayscale images. In this paper, we improve upon a widely used decolorization method with two extensions. First, we relax the need for heuristics on color orders, which the baseline method relies on when computing the contrast differences. In our method, the color orders are incorporated into the loss function and are determined through optimization. Moreover, we apply a nonlinear function on the grayscale contrast to better model human perception of contrast. Both qualitative and quantitative results on the standard benchmark demonstrate the effectiveness of our two extensions

    Learning based image transformation using convolutional neural networks

    Get PDF
    We have developed a learning-based image transformation framework and successfully applied it to three common image transformation operations: downscaling, decolorization, and high dynamic range image tone mapping. We use a convolutional neural network (CNN) as a non-linear mapping function to transform an input image to a desired output. A separate CNN network trained for a very large image classification task is used as a feature extractor to construct the training loss function of the image transformation CNN. Unlike similar applications in the related literature such as image super-resolution, none of the problems addressed in this paper have a known ground truth or target. For each problem, we reason abouta suitable learning objective function and develop an effective solution. This is the first work that uses deep learning to solve and unify these three common image processing tasks. We present experimental results to demonstrate the effectiveness of the new technique and its state-of-the-art performances

    Depth-aware Neural Style Transfer using Instance Normalization

    Full text link
    Neural Style Transfer (NST) is concerned with the artistic stylization of visual media. It can be described as the process of transferring the style of an artistic image onto an ordinary photograph. Recently, a number of studies have considered the enhancement of the depth-preserving capabilities of the NST algorithms to address the undesired effects that occur when the input content images include numerous objects at various depths. Our approach uses a deep residual convolutional network with instance normalization layers that utilizes an advanced depth prediction network to integrate depth preservation as an additional loss function to content and style. We demonstrate results that are effective in retaining the depth and global structure of content images. Three different evaluation processes show that our system is capable of preserving the structure of the stylized results while exhibiting style-capture capabilities and aesthetic qualities comparable or superior to state-of-the-art methods. Project page: https://ioannoue.github.io/depth-aware-nst-using-in.html.Comment: 8 pages, 8 figures, Computer Graphics & Visual Computing (CGVC) 202

    Spectral methods for multimodal data analysis

    Get PDF
    Spectral methods have proven themselves as an important and versatile tool in a wide range of problems in the fields of computer graphics, machine learning, pattern recognition, and computer vision, where many important problems boil down to constructing a Laplacian operator and finding a few of its eigenvalues and eigenfunctions. Classical examples include the computation of diffusion distances on manifolds in computer graphics, Laplacian eigenmaps, and spectral clustering in machine learning. In many cases, one has to deal with multiple data spaces simultaneously. For example, clustering multimedia data in machine learning applications involves various modalities or ``views'' (e.g., text and images), and finding correspondence between shapes in computer graphics problems is an operation performed between two or more modalities. In this thesis, we develop a generalization of spectral methods to deal with multiple data spaces and apply them to problems from the domains of computer graphics, machine learning, and image processing. Our main construction is based on simultaneous diagonalization of Laplacian operators. We present an efficient numerical technique for computing joint approximate eigenvectors of two or more Laplacians in challenging noisy scenarios, which also appears to be the first general non-smooth manifold optimization method. Finally, we use the relation between joint approximate diagonalizability and approximate commutativity of operators to define a structural similarity measure for images. We use this measure to perform structure-preserving color manipulations of a given image
    corecore