29,828 research outputs found

    Lower Bounds for Structuring Unreliable Radio Networks

    Full text link
    In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e., in time polylogarthmic in the network size). We then prove the importance of the assumption that nodes are provided advance knowledge of their reliable neighbors (i.e, neighbors connected by reliable links). Combined, these results answer an open question by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC 2011] are optimal with respect to their dual graph model assumptions. They also provide insight into what properties of an unreliable network enable efficient local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of the International Symposium on Distributed Computing (DISC

    A Random Attention Model

    Full text link
    This paper illustrates how one can deduce preference from observed choices when attention is not only limited but also random. In contrast to earlier approaches, we introduce a Random Attention Model (RAM) where we abstain from any particular attention formation, and instead consider a large class of nonparametric random attention rules. Our model imposes one intuitive condition, termed Monotonic Attention, which captures the idea that each consideration set competes for the decision-maker's attention. We then develop revealed preference theory within RAM and obtain precise testable implications for observable choice probabilities. Based on these theoretical findings, we propose econometric methods for identification, estimation, and inference of the decision maker's preferences. To illustrate the applicability of our results and their concrete empirical content in specific settings, we also develop revealed preference theory and accompanying econometric methods under additional nonparametric assumptions on the consideration set for binary choice problems. Finally, we provide general purpose software implementation of our estimation and inference results, and showcase their performance using simulations

    Combining Spot and Futures Markets: A Hybrid Market Approach to Dynamic Spectrum Access

    Full text link
    Dynamic spectrum access is a new paradigm of secondary spectrum utilization and sharing. It allows unlicensed secondary users (SUs) to exploit opportunistically the under-utilized licensed spectrum. Market mechanism is a widely-used promising means to regulate the consuming behaviours of users and, hence, achieves the efficient allocation and consumption of limited resources. In this paper, we propose and study a hybrid secondary spectrum market consisting of both the futures market and the spot market, in which SUs (buyers) purchase under-utilized licensed spectrum from a spectrum regulator, either through predefined contracts via the futures market, or through spot transactions via the spot market. We focus on the optimal spectrum allocation among SUs in an exogenous hybrid market that maximizes the secondary spectrum utilization efficiency. The problem is challenging due to the stochasticity and asymmetry of network information. To solve this problem, we first derive an off-line optimal allocation policy that maximizes the ex-ante expected spectrum utilization efficiency based on the stochastic distribution of network information. We then propose an on-line VickreyCClarkeCGroves (VCG) auction that determines the real-time allocation and pricing of every spectrum based on the realized network information and the pre-derived off-line policy. We further show that with the spatial frequency reuse, the proposed VCG auction is NP-hard; hence, it is not suitable for on-line implementation, especially in a large-scale market. To this end, we propose a heuristics approach based on an on-line VCG-like mechanism with polynomial-time complexity, and further characterize the corresponding performance loss bound analytically. We finally provide extensive numerical results to evaluate the performance of the proposed solutions.Comment: This manuscript is the complete technical report for the journal version published in INFORMS Operations Researc

    Optimal Scheduling and Power Allocation for Two-Hop Energy Harvesting Communication Systems

    Full text link
    Energy harvesting (EH) has recently emerged as a promising technique for green communications. To realize its potential, communication protocols need to be redesigned to combat the randomness of the harvested energy. In this paper, we investigate how to apply relaying to improve the short-term performance of EH communication systems. With an EH source and a non-EH half-duplex relay, we consider two different design objectives: 1) short-term throughput maximization; and 2) transmission completion time minimization. Both problems are joint scheduling and power allocation problems, rendered quite challenging by the half-duplex constraint at the relay. A key finding is that directional water-filling (DWF), which is the optimal power allocation algorithm for the single-hop EH system, can serve as guideline for the design of two-hop communication systems, as it not only determines the value of the optimal performance, but also forms the basis to derive optimal solutions for both design problems. Based on a relaxed energy profile along with the DWF algorithm, we derive key properties of the optimal solutions for both problems and thereafter propose efficient algorithms. Simulation results will show that both scheduling and power allocation optimizations are necessary in two-hop EH communication systems.Comment: Submitted to IEEE Transaction on Wireless Communicatio

    Optimal Event-Driven Multi-Agent Persistent Monitoring of a Finite Set of Targets

    Full text link
    We consider the problem of controlling the movement of multiple cooperating agents so as to minimize an uncertainty metric associated with a finite number of targets. In a one-dimensional mission space, we adopt an optimal control framework and show that the solution is reduced to a simpler parametric optimization problem: determining a sequence of locations where each agent may dwell for a finite amount of time and then switch direction. This amounts to a hybrid system which we analyze using Infinitesimal Perturbation Analysis (IPA) to obtain a complete on-line solution through an event-driven gradient-based algorithm which is also robust with respect to the uncertainty model used. The resulting controller depends on observing the events required to excite the gradient-based algorithm, which cannot be guaranteed. We solve this problem by proposing a new metric for the objective function which creates a potential field guaranteeing that gradient values are non-zero. This approach is compared to an alternative graph-based task scheduling algorithm for determining an optimal sequence of target visits. Simulation examples are included to demonstrate the proposed methods.Comment: 12 pages full version, IEEE Conference on Decision and Control, 201
    • …
    corecore