3,605 research outputs found

    A New Contraction-Based NMPC Formulation Without Stability-Related terminal Constraints

    Full text link
    Contraction-Based Nonlinear Model Predictive Control (NMPC) formulations are attractive because of the generally short prediction horizons they require and the needless use of terminal set computation that are commonly necessary to guarantee stability. However, the inclusion of the contraction constraint in the definition of the underlying optimization problem often leads to non standard features such as the need for multi-step open-loop application of control sequences or the use of multi-step memorization of the contraction level that may induce unfeasibility in presence of unexpected disturbance. This paper proposes a new formulation of contraction-based NMPC in which no contraction constraint is explicitly involved. Convergence of the resulting closed-loop behavior is proved under mild assumptions.Comment: accepted in short version IFAC Nolcos 2016. submitted to Automatica as a technical communiqu

    Stability proof for nonlinear MPC design using monotonically increasing weighting profiles without terminal constraints

    Full text link
    In this note, a new formulation of Model Predictive Control (MPC) framework with no stability-related terminal constraint is proposed and its stability is proved under mild standard assumptions. The novelty in the formulation lies in the use of time-varying monotonically increasing stage cost penalty. The main result is that the 00-reachability prediction horizon can always be made stabilizing provided that the increasing rate of the penalty is made sufficiently high.Comment: Submitted to Automatic

    Enlarging the domain of attraction of MPC controllers

    Get PDF
    This paper presents a method for enlarging the domain of attraction of nonlinear model predictive control (MPC). The usual way of guaranteeing stability of nonlinear MPC is to add a terminal constraint and a terminal cost to the optimization problem such that the terminal region is a positively invariant set for the system and the terminal cost is an associated Lyapunov function. The domain of attraction of the controller depends on the size of the terminal region and the control horizon. By increasing the control horizon, the domain of attraction is enlarged but at the expense of a greater computational burden, while increasing the terminal region produces an enlargement without an extra cost. In this paper, the MPC formulation with terminal cost and constraint is modified, replacing the terminal constraint by a contractive terminal constraint. This constraint is given by a sequence of sets computed off-line that is based on the positively invariant set. Each set of this sequence does not need to be an invariant set and can be computed by a procedure which provides an inner approximation to the one-step set. This property allows us to use one-step approximations with a trade off between accuracy and computational burden for the computation of the sequence. This strategy guarantees closed loop-stability ensuring the enlargement of the domain of attraction and the local optimality of the controller. Moreover, this idea can be directly translated to robust MPC.Ministerio de Ciencia y TecnologĂ­a DPI2002-04375-c03-0

    Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization

    Full text link
    This paper proposes an algorithmic framework for solving parametric optimization problems which we call adjoint-based predictor-corrector sequential convex programming. After presenting the algorithm, we prove a contraction estimate that guarantees the tracking performance of the algorithm. Two variants of this algorithm are investigated. The first one can be used to solve nonlinear programming problems while the second variant is aimed to treat online parametric nonlinear programming problems. The local convergence of these variants is proved. An application to a large-scale benchmark problem that originates from nonlinear model predictive control of a hydro power plant is implemented to examine the performance of the algorithms.Comment: This manuscript consists of 25 pages and 7 figure

    Analysis and design of model predictive control frameworks for dynamic operation -- An overview

    Full text link
    This article provides an overview of model predictive control (MPC) frameworks for dynamic operation of nonlinear constrained systems. Dynamic operation is often an integral part of the control objective, ranging from tracking of reference signals to the general economic operation of a plant under online changing time-varying operating conditions. We focus on the particular challenges that arise when dealing with such more general control goals and present methods that have emerged in the literature to address these issues. The goal of this article is to present an overview of the state-of-the-art techniques, providing a diverse toolkit to apply and further develop MPC formulations that can handle the challenges intrinsic to dynamic operation. We also critically assess the applicability of the different research directions, discussing limitations and opportunities for further researc

    Reinforcement Learning Based on Real-Time Iteration NMPC

    Get PDF
    Reinforcement Learning (RL) has proven a stunning ability to learn optimal policies from data without any prior knowledge on the process. The main drawback of RL is that it is typically very difficult to guarantee stability and safety. On the other hand, Nonlinear Model Predictive Control (NMPC) is an advanced model-based control technique which does guarantee safety and stability, but only yields optimality for the nominal model. Therefore, it has been recently proposed to use NMPC as a function approximator within RL. While the ability of this approach to yield good performance has been demonstrated, the main drawback hindering its applicability is related to the computational burden of NMPC, which has to be solved to full convergence. In practice, however, computationally efficient algorithms such as the Real-Time Iteration (RTI) scheme are deployed in order to return an approximate NMPC solution in very short time. In this paper we bridge this gap by extending the existing theoretical framework to also cover RL based on RTI NMPC. We demonstrate the effectiveness of this new RL approach with a nontrivial example modeling a challenging nonlinear system subject to stochastic perturbations with the objective of optimizing an economic cost.Comment: accepted for the IFAC World Congress 202

    Robust predictive feedback control for constrained systems

    Get PDF
    A new method for the design of predictive controllers for SISO systems is presented. The proposed technique allows uncertainties and constraints to be concluded in the design of the control law. The goal is to design, at each sample instant, a predictive feedback control law that minimizes a performance measure and guarantees of constraints are satisfied for a set of models that describes the system to be controlled. The predictive controller consists of a finite horizon parametric-optimization problem with an additional constraint over the manipulated variable behavior. This is an end-constraint based approach that ensures the exponential stability of the closed-loop system. The inclusion of this additional constraint, in the on-line optimization algorithm, enables robust stability properties to be demonstrated for the closed-loop system. This is the case even though constraints and disturbances are present. Finally, simulation results are presented using a nonlinear continuous stirred tank reactor model
    • …
    corecore