95 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Smart Room Attendance Monitoring and Location Tracking with iBeacon Technology

    Get PDF
    The objective of this project was to develop a system and a phone application using iBeacon technology to track people’s attendance and location at different types of events. This includes tracking their location by using a location algorithm and receiving identifying information from each person through the use of a phone application. This information will then be sent to a server for record keeping

    A Fast-rate WLAN Measurement Tool for Improved Miss-rate in Indoor Navigation

    Full text link
    Recently, location-based services (LBS) have steered attention to indoor positioning systems (IPS). WLAN-based IPSs relying on received signal strength (RSS) measurements such as fingerprinting are gaining popularity due to proven high accuracy of their results. Typically, sets of RSS measurements at selected locations from several WLAN access points (APs) are used to calibrate the system. Retrieval of such measurements from WLAN cards are commonly at one-Hz rate. Such measurement collection is needed for offline radio-map surveying stage which aligns fingerprints to locations, and for online navigation stage, when collected measurements are associated with the radio-map for user navigation. As WLAN network is not originally designed for positioning, an RSS measurement miss could have a high impact on the fingerprinting system. Additionally, measurement fluctuations require laborious signal processing, and surveying process can be very time consuming. This paper proposes a fast-rate measurement collection method that addresses previously mentioned problems by achieving a higher probability of RSS measurement collection during a given one-second window. This translates to more data for statistical processing and faster surveying. The fast-rate collection approach is analyzed against the conventional measurement rate in a proposed testing methodology that mimics real-life scenarios related to IPS surveying and online navigation

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Enhancing Indoor Localisation: a Bluetooth Low Energy (BLE) Beacon Placement approach

    Get PDF
    Indoor location-based services have become increasingly vital in various sectors, including industries, healthcare, airports, and crowded infrastructures, facilitating asset tracking and user navigation. This project addresses the critical challenge of optimising beacon placement for indoor location, employing Bluetooth technology as the communication protocol. The significance of this research lies in the effi ciency and accuracy that an optimised beacon layout can provide, enhancing the effectiveness of indoor positioning systems. The algorithm developed takes into con sideration materials attenuation, coverage and Line of Sight (LOS) conditions to optimise its layouts. Experimental validation of the algorithm’s performance was conducted by comparing two beacon layouts: one optimised by the algorithm and the other manually arranged by individuals with empirical knowledge in the field. The experiment considered three distinct positions within the schematic, allowing for a comprehensive assessment of the optimised layout’s superior performance. The results of this research offer insights into the potential of the algorithm to revolu tionise indoor location services, providing a more reliable and cost-effective solution for a multitude of applications.Os serviços de localização em ambientes internos tornaram-se cada vez mais essenciais em vários setores, incluindo indústrias, cuidados de saúde, aeroportos e infraestruturas movimentadas, facilitando o rastreamento de objetos e a navegação de utilizadores. Este projeto aborda o desafio crítico da otimização da colocação de beacons para localização em ambientes internos, utilizando a tecnologia Bluetooth como protocolo de comunicação. A importância desta pesquisa reside na eficiência e precisão que uma disposição otimizada de beacons pode proporcionar, melhorando a eficácia de sistemas de posicionamento em ambientes internos. O algoritmo desenvolvido leva em consideração a atenuação de materiais, a cobertura e as condições de visão direta para otimizar as suas disposições. A validação experimental do desempenho do algoritmo foi realizada ao comparar duas disposições de beacons: uma otimizada pelo algoritmo e outra organizada manualmente por indivíduos com conhecimento empírico na área. A experiência considerou três posições distintas no esquema, permitindo uma avaliação abrangente do desempenho superior da disposição otimizada. Os resultados desta pesquisa oferecem descobertas importantes sobre o potencial do algoritmo para revolucionar os serviços de localização em ambientes internos, proporcionando uma solução mais confiável e econômica para uma variedade de aplicações

    Indoor localization based on multiple LEDs position estimation

    Get PDF
    This paper describes the simulation results and hardware implementation of an inexpensive, low-complexity LED based indoor positioning system. Localization by multiple LEDs estimation model (MLEM) approximates position of a mobile receiver by the acquisition of positional information from LED transmitters. Multiple LED orientation can either be with or without overlap. Receivers in a no-overlap LED orientation experience only single access while multiple access receivers are designed for orientations with overlaps. Single and multiple access systems were developed and implemented by the use of low cost ATMEG 328 microcontroller. Since multiple LEDs transmit data at the same wavelength and are asynchronous, overlap in multiple access system causes interference. The possibility of this interference is reduced by packet based pulse duration multiplexing (PDM) and a low duty cycle transmission protocol. By the use of MLEM, root mean square error in position estimation is reduced to about 1 percent of the length an indoor location. Experimental results show that overlap increases positional accuracy over a wider coverage region and that the multiple access system allows for a more reliable positioning

    Asynchronous Ultrasonic Trilateration for Indoor Positioning of Mobile Phones

    Get PDF
    Spatial awareness is fast becoming the key feature on today‟s mobile devices. While accurate outdoor navigation has been widely available for some time through Global Positioning Systems (GPS), accurate indoor positioning is still largely an unsolved problem. One major reason for this is that GPS and other Global Navigation Satellite Systems (GNSS) systems offer accuracy of a scale far different to that required for effective indoor navigation. Indoor positioning is also hindered by poor GPS signal quality, a major issue when developing dedicated indoor locationing systems. In addition, many indoor systems use specialized hardware to calculate accurate device position, as readily available wireless protocols have so far not delivered sufficient levels of accuracy. This research aims to investigate how the mobile phone‟s innate ability to produce sound (notably ultrasound) can be utilised to deliver more accurate indoor positioning than current methods. Experimental work covers limitations of mobile phone speakers in regard to generation of high frequencies, propagation patternsof ultrasound and their impact on maximum range, and asynchronous trilateration. This is followed by accuracy and reliability tests of an ultrasound positioning system prototype.This thesis proposes a new method of positioning a mobile phone indoors with accuracy substantially better than other contemporary positioning systems available on off-theshelf mobile devices. Given that smartphones can be programmed to correctly estimate direction, this research outlines a potentially significant advance towards a practical platform for indoor Location Based Services. Also a novel asynchronous trilateration algorithm is proposed that eliminates the need for synchronisation between the mobile device and the positioning infrastructure

    INDOOR-WIRELESS LOCATION TECHNIQUES AND ALGORITHMS UTILIZING UHF RFID AND BLE TECHNOLOGIES

    Get PDF
    The work presented herein explores the ability of Ultra High Frequency Radio Frequency (UHF RF) devices, specifically (Radio Frequency Identification) RFID passive tags and Bluetooth Low Energy (BLE) to be used as tools to locate items of interest inside a building. Localization Systems based on these technologies are commercially available, but have failed to be widely adopted due to significant drawbacks in the accuracy and reliability of state of the art systems. It is the goal of this work to address that issue by identifying and potentially improving upon localization algorithms. The work presented here breaks the process of localization into distance estimations and trilateration algorithms to use those estimations to determine a 2D location. Distance estimations are the largest error source in trilateration. Several methods are proposed to improve speed and accuracy of measurements using additional information from frequency variations and phase angle information. Adding information from the characteristic signature of multipath signals allowed for a significant reduction in distance estimation error for both BLE and RFID which was quantified using neural network optimization techniques. The resulting error reduction algorithm was generalizable to completely new environments with very different multipath behavior and was a significant contribution of this work. Another significant contribution of this work is the experimental comparison of trilateration algorithms, which tested new and existing methods of trilateration for accuracy in a controlled environment using the same data sets. Several new or improved methods of triangulation are presented as well as traditional methods from the literature in the analysis. The Antenna Pattern Method represents a new way of compensating for the antenna radiation pattern and its potential impact on signal strength, which is also an important contribution of this effort. The performance of each algorithm for multiple types of inputs are compared and the resulting error matrix allows a potential system designer to select the best option given the particular system constraints
    • …
    corecore