44 research outputs found

    A vision-guided parallel parking system for a mobile robot using approximate policy iteration

    Get PDF
    Reinforcement Learning (RL) methods enable autonomous robots to learn skills from scratch by interacting with the environment. However, reinforcement learning can be very time consuming. This paper focuses on accelerating the reinforcement learning process on a mobile robot in an unknown environment. The presented algorithm is based on approximate policy iteration with a continuous state space and a fixed number of actions. The action-value function is represented by a weighted combination of basis functions. Furthermore, a complexity analysis is provided to show that the implemented approach is guaranteed to converge on an optimal policy with less computational time. A parallel parking task is selected for testing purposes. In the experiments, the efficiency of the proposed approach is demonstrated and analyzed through a set of simulated and real robot experiments, with comparison drawn from two well known algorithms (Dyna-Q and Q-learning)

    Dynamic Planning in Open-Ended Dialogue using Reinforcement Learning

    Full text link
    Despite recent advances in natural language understanding and generation, and decades of research on the development of conversational bots, building automated agents that can carry on rich open-ended conversations with humans "in the wild" remains a formidable challenge. In this work we develop a real-time, open-ended dialogue system that uses reinforcement learning (RL) to power a bot's conversational skill at scale. Our work pairs the succinct embedding of the conversation state generated using SOTA (supervised) language models with RL techniques that are particularly suited to a dynamic action space that changes as the conversation progresses. Trained using crowd-sourced data, our novel system is able to substantially exceeds the (strong) baseline supervised model with respect to several metrics of interest in a live experiment with real users of the Google Assistant

    Co-operative Extended Kohonen Mapping (EKM) for wireless sensor networks

    Full text link
    This paper discusses a methodology to manage wireless sensor networks (WSN) with self-organising feature maps, using co-operative Extended Kohonen Maps (EKMs). EKMs have been successfully demonstrated in other machine-learning contexts such as learning sensori-motor control and feedback tasks. Through a quantitative analysis of the algorithmic process, an indirect-mapping EKM can self-organise from a given input space, such as theWSN's external factors, to administer theWSN's routing and clustering functions with a control parameter space. Preliminary results demonstrate indirect mapping with EKMs provide an economical control and feedback mechanism by operating in a continuous sensory control space when compared with direct mapping techniques. By training the control parameter, a faster convergence is made with processes such as the recursive least squares method. The management of a WSN's clustering and routing procedures are enhanced by the co-operation of multiple self-organising EKMs to adapt to actively changing conditions in the environment. Ā© 2009 Springer-Verlag Berlin Heidelberg
    corecore