3 research outputs found

    Towards time-evolving analytics: Online learning for time-dependent evolving data streams

    Get PDF
    Traditional historical data analytics is at risk in a world where volatility, uncertainty, complexity, and ambiguity are the new normal. While Streaming Machine Learning (SML) and Time-series Analytics (TSA) attack some aspects of the problem, we still need a comprehensive solution. SML trains models using fewer data and in a continuous/adaptive way relaxing the assumption that data points are identically distributed. TSA considers temporal dependence among data points, but it assumes identical distribution. Every Data Scientist fights this battle with ad-hoc solutions. In this paper, we claim that, due to the temporal dependence on the data, the existing solutions do not represent robust solutions to efficiently and automatically keep models relevant even when changes occur, and real-time processing is a must. We propose a novel and solid scientific foundation for Time-Evolving Analytics from this perspective. Such a framework aims to develop the logical, methodological, and algorithmic foundations for fast, scalable, and resilient analytics

    Continuous monitoring for changepoints in data streams using adaptive estimation

    Get PDF
    Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor the stream as it evolves. We refer to this problem as continuous monitoring. Sequential algorithms such as CUSUM, EWMA and their more sophisticated variants usually require a pair of parameters to be selected for practical application. However, the choice of parameter values is often based on the anticipated size of the changes and a given choice is unlikely to be optimal for the multiple change sizes which are likely to occur in a streaming data context. To address this critical issue, we introduce a changepoint detection framework based on adaptive forgetting factors that, instead of multiple control parameters, only requires a single parameter to be selected. Simulated results demonstrate that this framework has utility in a continuous monitoring setting. In particular, it reduces the burden of selecting parameters in advance. Moreover, the methodology is demonstrated on real data arising from Foreign Exchange markets

    Continuous monitoring for changepoints in data streams using adaptive estimation

    No full text
    Data streams are characterised by a potentially unending sequence of high-frequency observations which are subject to unknown temporal variation. Many modern streaming applications demand the capability to sequentially detect changes as soon as possible after they occur, while continuing to monitor the stream as it evolves. We refer to this problem as continuous monitoring. Sequential algorithms such as CUSUM, EWMA and their more sophisticated variants usually require a pair of parameters to be selected for practical application. However, the choice of parameter values is often based on the anticipated size of the changes and a given choice is unlikely to be optimal for the multiple change sizes which are likely to occur in a streaming data context. To address this critical issue, we introduce a changepoint detection framework based on adaptive forgetting factors that, instead of multiple control parameters, only requires a single parameter to be selected. Simulated results demonstrate that this framework has utility in a continuous monitoring setting. In particular, it reduces the burden of selecting parameters in advance. Moreover, the methodology is demonstrated on real data arising from Foreign Exchange markets.ISSN:0960-3174ISSN:1573-137
    corecore