4 research outputs found

    Distributed Soft Coding with a Soft Input Soft Output (SISO) Relay Encoder in Parallel Relay Channels

    Full text link
    In this paper, we propose a new distributed coding structure with a soft input soft output (SISO) relay encoder for error-prone parallel relay channels. We refer to it as the distributed soft coding (DISC). In the proposed scheme, each relay first uses the received noisy signals to calculate the soft bit estimate (SBE) of the source symbols. A simple SISO encoder is developed to encode the SBEs of source symbols based on a constituent code generator matrix. The SISO encoder outputs at different relays are then forwarded to the destination and form a distributed codeword. The performance of the proposed scheme is analyzed. It is shown that its performance is determined by the generator sequence weight (GSW) of the relay constituent codes, where the GSW of a constituent code is defined as the number of ones in its generator sequence. A new coding design criterion for optimally assigning the constituent codes to all the relays is proposed based on the analysis. Results show that the proposed DISC can effectively circumvent the error propagation due to the decoding errors in the conventional detect and forward (DF) with relay re-encoding and bring considerable coding gains, compared to the conventional soft information relaying.Comment: to appear on IEEE Transactions on Communication

    Parameter Estimation and Tracking in Physical Layer Network Coding

    Get PDF
    Recently, there has been a growing interest in improving the performance of the wireless relay networks through the use of Physical Layer Network Coding (PLNC) techniques. The physical layer network coding technique allows two terminals to transmit simultaneously to a relay node and decode the modulo-2 sum of the transmitted bits at the relay. This technique considerably improves performance over Digital Network Coding technique. In this thesis, we will present an algorithm for joint decoding of the modulo-2 sum of bits transmitted from two unsynchronized transmitters at the relay. We shall also address the problems that arise when boundaries of the signals do not align with each other and when the channel parameters are slowly varying and are unknown to the receiver at the relay node. Our approach will first jointly estimate the timing o sets and fading gains of both signals using a known pilot sequence sent by both transmitters in the beginning of the packet and then perform Maximum Likelihood detection of data using a state-based Viterbi decoding scheme that takes into account the timing o sets between the interfering signals. We shall present an algorithm for simultaneously tracking the amplitude and phase of slowly varying wireless channel that will work in conjunction our Maximum Likelihood detection algorithm. Finally, we shall provide extension of our receiver to support antenna diversity. Our results show that the proposed detection algorithm works reasonably well, even with the assumption of timing misalignment. We also demonstrate that the performance of the algorithm is not degraded by amplitude and/or phase mismatch between the users. We further show that the performance of the channel tracking algorithm is close to the ideal case i.e. when the channel estimates are perfectly known. Finally, we demonstrate the performance boost provided by the receiver antenna diversity

    Security and Prioritization in Multiple Access Relay Networks

    Get PDF
    In this work, we considered a multiple access relay network and investigated the following three problems: 1- Tradeoff between reliability and security under falsified data injection attacks; 2-Prioritized analog relaying; 3- mitigation of Forwarding Misbehaviors in Multiple access relay network. In the first problem, we consider a multiple access relay network where multiple sources send independent data to a single destination through multiple relays which may inject a falsified data into the network. To detect the malicious relays and discard (erase) data from them, tracing bits are embedded in the information data at each source node. Parity bits may be also added to correct the errors caused by fading and noise. When the total amount of redundancy, tracing bits plus parity bits, is fixed, an increase in parity bits to increase the reliability requires a decrease in tracing bits which leads to a less accurate detection of malicious behavior of relays, and vice versa. We investigate the tradeoff between the tracing bits and the parity bits in minimizing the probability of decoding error and maximizing the throughput in multi-source, multi-relay networks under falsified data injection attacks. The energy and throughput gains provided by the optimal allocation of redundancy and the tradeoff between reliability and security are analyzed. In the second problem, we consider a multiple access relay network where multiple sources send independent data simultaneously to a common destination through multiple relay nodes. We present three prioritized analog cooperative relaying schemes that provide different class of service (CoS) to different sources while being relayed at the same time in the same frequency band. The three schemes take the channel variations into account in determining the relay encoding (combining) rule, but differ in terms of whether or how relays cooperate. Simulation results on the symbol error probability and outage probability are provided to show the effectiveness of the proposed schemes. In the third problem, we propose a physical layer approach to detect the relay node that injects false data or adds channel errors into the network encoder in multiple access relay networks. The misbehaving relay is detected by using the maximum a posteriori (MAP) detection rule which is optimal in the sense of minimizing the probability of incorrect decision (false alarm and miss detection). The proposed scheme does not require sending extra bits at the source, such as hash function or message authentication check bits, and hence there is no transmission overhead. The side information regarding the presence of forwarding misbehavior is exploited at the decoder to enhance the reliability of decoding. We derive the probability of false alarm and miss detection and the probability of bit error, taking into account the lossy nature of wireless links

    Improving the Bandwidth Efficiency of Multiple Access Channels using Network Coding and Successive Decoding

    Get PDF
    In this thesis, different approaches for improving the bandwidth efficiency of Multiple Access Channels (MAC) have been proposed. Such improvements can be achieved with methods that use network coding, or with methods that implement successive decoding. Both of these two methods have been discussed here. Under the first method, two novel schemes for using network coding in cooperative networks have been proposed. In the first scheme, network coding generates some redundancy in addition to the redundancy that is generated by the channel code. These redundancies are used in an iterative decoding system at the destination. In the second scheme, the output of the channel encoder in each source node is shortened and transmitted. The relay, by use of the network code, sends a compressed version of the parts missing from the original transmission. This facilitates the decoding procedure at the destination. Simulation based optimizations have been developed. The results indicate that in the case of sources with non-identical power levels, both scenarios outperform the non-relay case. The second method, involves a scheme to increase the channel capacity of an existing channel. This increase is made possible by the introduction of a new Raptor coded interfering channel to an existing channel. Through successive decoding at the destination, the data of both main and interfering sources is decoded. We will demonstrate that when some power difference exists, there is a tradeoff between achieved rate and power efficiency. We will also find the optimum power allocation scenario for this tradeoff. Ultimately we propose a power adaptation scheme that allocates the optimal power to the interfering channel based on an estimation of the main channel's condition. Finally, we generalize our work to allow the possibility of decoding either the secondary source data or the main source data first. We will investigate the performance and delay for each decoding scheme. Since the channels are non-orthogonal, it is possible that for some power allocation scenarios, constellation points get erased. To address this problem we use constellation rotation. The constellation map of the secondary source is rotated to increase the average distance between the points in the constellation (resulting from the superposition of the main and interfering sources constellation.) We will also determine the optimum constellation rotation angle for the interfering source analytically and confirm it with simulations
    corecore