11,015 research outputs found

    Continuous Nearest Neighbor Monitoring in Road Networks

    Get PDF
    Recent research has focused on continuous monitoring of nearest neighbors (NN) in highly dynamic scenarios, where the queries and the data objects move frequently and arbitrarily. All existing methods, however, assume the Euclidean distance metric. In this paper we study k-NN monitoring in road networks, where the distance between a query and a data object is determined by the length of the shortest path connecting them. We propose two methods that can handle arbitrary object and query moving patterns, as well as fluctuations of edge weights. The first one maintains the query results by processing only updates that may invalidate the current NN sets. The second method follows the shared execution paradigm to reduce the processing time. In particular, it groups together the queries that fall in the path between two consecutive intersections in the network, and produces their results by monitoring the NN sets of these intersections. We experimentally verify the applicability of the proposed techniques to continuous monitoring of large data and query sets

    Empirical exploration of air traffic and human dynamics in terminal airspaces

    Full text link
    Air traffic is widely known as a complex, task-critical techno-social system, with numerous interactions between airspace, procedures, aircraft and air traffic controllers. In order to develop and deploy high-level operational concepts and automation systems scientifically and effectively, it is essential to conduct an in-depth investigation on the intrinsic traffic-human dynamics and characteristics, which is not widely seen in the literature. To fill this gap, we propose a multi-layer network to model and analyze air traffic systems. A Route-based Airspace Network (RAN) and Flight Trajectory Network (FTN) encapsulate critical physical and operational characteristics; an Integrated Flow-Driven Network (IFDN) and Interrelated Conflict-Communication Network (ICCN) are formulated to represent air traffic flow transmissions and intervention from air traffic controllers, respectively. Furthermore, a set of analytical metrics including network variables, complex network attributes, controllers' cognitive complexity, and chaotic metrics are introduced and applied in a case study of Guangzhou terminal airspace. Empirical results show the existence of fundamental diagram and macroscopic fundamental diagram at the route, sector and terminal levels. Moreover, the dynamics and underlying mechanisms of "ATCOs-flow" interactions are revealed and interpreted by adaptive meta-cognition strategies based on network analysis of the ICCN. Finally, at the system level, chaos is identified in conflict system and human behavioral system when traffic switch to the semi-stable or congested phase. This study offers analytical tools for understanding the complex human-flow interactions at potentially a broad range of air traffic systems, and underpins future developments and automation of intelligent air traffic management systems.Comment: 30 pages, 28 figures, currently under revie

    Best point detour query in road networks

    Get PDF
    A point detour is a temporary deviation from a user preferred path P (not necessarily a shortest network path) for visiting a data point such as a supermarket or McDonald's. The goodness of a point detour can be measured by the additional traveling introduced, called point detour cost or simply detour cost. Given a preferred path to be traveling on, Best Point Detour (BPD) query aims to identify the point detour with the minimum detour cost. This problem can be frequently found in our daily life but is less studied. In this work, the efficient processing of BPD query is investigated with support of devised optimization techniques. Furthermore, we investigate continuous-BPD query with target at the scenario where the path to be traveling on continuously changes when a user is moving to the destination along the preferred path. The challenge of continuous-BPD query lies in finding a set of update locations which split P into partitions. In the same partition, the user has the same BPD. We process continuous-BPD query by running BPD queries in a deliberately planned strategy. The efficiency study reveals that the number of BPD queries executed is optimal. The efficiency of BPD query and continuous-BPD query processing has been verified by extensive experiments

    Managing continuous k-nearest neighbor queries in mobile peer-to-peer networks

    Get PDF
    A continuous k nearest neighbor (CKNN) query retrieves the set of k mobile nodes that are nearest to a query point, and provides real-time updates whenever this set of nodes changes. A CKNN query can be either stationary or mobile, depending on the mobility of its query point. Efficient processing of CKNN queries is essential to many applications, yet most existing techniques assume a centralized system, where one or more central servers are used for query management. In this thesis, we assume a fully distributed mobile peer-to-peer system, where mobile nodes are the only computing devices, and present a unified platform for efficient processing of both stationary and mobile CKNN queries. For each query, our technique computes a set of safe boundaries and lets mobile nodes monitor their movement with respect to these boundaries. We show that the result of a query does not change unless a node crosses over a safe boundary. As such, our technique requires a query to be re-evaluated only when there is a crossing event, thus minimizing the cost of query evaluation. For performance study, we model the communication cost incurred in query processing with a detailed mathematical analysis and verify its accuracy using simulation. Our extensive study shows that the proposed technique is able to provide real-time and accurate query results with a reasonable cost
    • …
    corecore