
Best Point Detour Query in Road Networks

Shuo Shang, Ke Deng and Kexin Xie
School of Information Technology and Electrical Engineering

The University of Queensland, Australia
{shangs, dengke, kexin}@itee.uq.edu.au

ABSTRACT
A point detour is a temporary deviation from a user pre-
ferred path P (not necessarily a shortest network path) for
visiting a data point such as a supermarket or McDonald’s.
The goodness of a point detour can be measured by the addi-
tional traveling introduced, called point detour cost or sim-
ply detour cost. Given a preferred path to be traveling on,
Best Point Detour (BPD) query aims to identify the point
detour with the minimum detour cost. This problem can be
frequently found in our daily life but is less studied. In this
work, the efficient processing of BPD query is investigated
with support of devised optimization techniques. Further-
more, we investigate continuous-BPD query with target at
the scenario where the path to be traveling on continuously
changes when a user is moving to the destination along the
preferred path. The challenge of continuous-BPD query lies
in finding a set of update locations which split P into parti-
tions. In the same partition, the user has the same BPD. We
process continuous-BPD query by running BPD queries in a
deliberately planned strategy. The efficiency study reveals
that the number of BPD queries executed is optimal. The
efficiency of BPD query and continuous-BPD query process-
ing has been verified by extensive experiments.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Algorithms

Keywords
Best point detour query, Road networks, Spatial databases

1. INTRODUCTION
When a user is moving along a preferred path P (not nec-
essarily a network shortest path) from a source location to
a destination location in road networks, a point detour is

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee. ACM GIS ’10 , November 2-5, 2010. San Jose, CA, USA
(c) 2010 ACM ISBN 978-1-4503-0428-3/10/11...$10.00

a temporary deviation from P for visiting a point such as
a supermarket or McDonald’s 1. The detour causes extra
traveling. The detour distance is the network shortest path
distance from the exit off P , called out-exit, to the data
point and then to the exit back to P , called in-exit. A
natural problem is to find the detour which introduces the
minimum extra traveling and this problem is motivated par-
ticularly by the proliferation of GPS-enabled location based
services.

In the detour planning of real scenarios, using different exits
is allowed. However, the most relevant works only stud-
ied a special case of this problem which forces users to use
the same out- and in-exit in a detour. The special case
of the problem is known as Path Nearest Neighbor query
(PNN) [1] and In-route Nearest Neighbor query (IRNN) [16,
18]. In [16, 18, 1], it is pragmatically assumed that users
(e.g. commuters) prefer to follow the route they are famil-
iar with, thus they would like to choose the data point with
the minimum deviation from the path, after visiting, they
will return to the previous route and continue the journey.
However, the utility of IRNN and PNN query is limited since
users have to use the same exit for a detour. The essential
objective of IRNN and PNN is to find the data point which
is the closest to P . In most situations, on the other hand,
what users really concern is the extra traveling introduced
by the detour but not how far away the data point is from
the path. The goodness of a point detour should be mea-
sured by the net increase of the traveling introduced, called
point detour cost or simply detour cost. In this sense, the
data point closest to P may not be a good choice. The rea-
son is that a detour using different exits may avoid a part
of traveling on P ; thus offset the extra travelling for detour.

See an example in figure 1, s, t are source and destination
locations. The preferred path P from s to t is indicated by
the bold line; e1, e2, e3 and e4 are exits in P ; o1, o2, o3 and o4

are data points. A user is currently at location c. IRNN and
PNN will return the point detour e4 → o3 → e4 relevant to
the path to be traveling on, i.e. the path from c to t along
P . The extra traveling sd(e4, o3) + sd(o3, e4) is 30 where
sd(x, y) denotes the network shortest path distance between
two locations x and y. Nonetheless, if different exits are
allowed, the point detour e1 → o2 → e3 will be returned and
the extra traveling sd(e1, o2)+sd(o2, e3)−d(e1, e3) is 7 where
d(x, y) denotes the path distance between two locations x
and y along P .

1In this paper, the point detour is also called detour

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/15110145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

s

t

e 1

e 3

o 2
c

 P

o 1

o 4

e 2

28

18
17 o 3

e 4

15

Figure 1: An example of point detour

In road networks, given a data point set O, the path to be
traveling on is called query path, i.e. the path from user’s
current location to destination along the preferred path. A
detour is relevant to a query path if both out- and in-exit
are in the query path. The Best Point Detour (BPD) query
searches all possible point detours relevant to the query path
for the one with the minimum detour cost. The focus of this
work is on the efficiency issue of BPD query processing. A
number of pruning techniques are devised and an efficiency
study is provided to optimize the network search. (This
work reports the best point detour search but the proposed
techniques are applicable to k best point detour query with
direct extension.) The solution of a BPD query is valid if
user’s location does not change in P . However, when user
is moving, the query path keeps changing and consequently
the solution of a BPD query may change at some points. It
is impractical to execute BPD query repeatedly to monitor
the update of BPD without a premeditated approach.

This motivates the study of Continuous Best Point Detour
(continuous-BPD) query in this work. The challenge of
continuous-BPD query lies in finding a set of update loca-
tions which split P into partitions. In the same partition,
the user has the same BPD. The continuous-BPD query pro-
cessing is accelerated by performing BPD queries in a delib-
erately planned strategy. The efficiency study reveals that
the number of BPD queries executed is optimal. The ef-
ficiency has been verified by extensive experiments. As a
further step, this work also investigates a practical situation
where the destination is too far away, but the interest of a
user may be the BPD available within a certain distance δ,
such as“Find the best detour to a MacDonald’s from the way
50km ahead along P”.

So far, the user is supposed to go back to the preferred path
after visiting a data point and continues the journey to the
destination. Alternatively, the user may chose not to go back
and would like to find a new path from the current location
to the destination. Both of them are common in practice.
The proposed BPD query is capable to handle both situa-
tions by introducing a parameter τ , called detour distance
threshold, which indicates the tolerance of user on the trav-
eling not on the preferred path. In specific, the traveling off
the preferred path cannot be greater than τ . If the latter
situation is the choice of users, τ = ∞ is specified and BPD
query returns a best point detour which takes the shortest

path to the destination after visiting a data point. For the
former situation, τ can be specified in different ways such as
a percentage of the length of the preferred path, or a factor
of the deviation of IRNN (or PNN) to the preferred path.
No matter what the setting of τ is, the point detour with
the minimum detour cost is always returned by the proposed
techniques. In this work, we suppose τ has been specified
by user and our focus is on the BPD query processing under
the constraint of τ .

The rest of the paper is organized as follows. Section 2
presents related work and section 3 introduces the network
distance index used in this paper as well as problem defini-
tions. After that, the BPD query processing is described in
section 4. This is followed by continuous-BPD query pro-
cessing in section 5. This paper is concluded in section 7
after discussion on experiments results in section 6.

2. RELATED WORK
Spatial queries in advanced traveler information system con-
tinue to proliferate in recent years. Nearest Neighbor(NN)
query is considered as an important issue in such kind of
applications. This kind of query aims to retrieve the closest
neighbor to a query point from a set of given objects. Based
on different constraint conditions, NN query processing can
be classified into three categories, such that in Euclidean
spaces (e.g. [12, 6]), in spatial networks (e.g. [9, 8, 10, 15]),
and in higher dimensional spaces (e.g. [7, 3]).

As a variant of NN queries, Continuous Nearest Neighbor
queries (CNN) [2, 11, 17, 14] report the kNN results con-
tinuously while the user is moving along a path. This type
of queries aims to find the split points on the query path
where an update of the kNN is required, and thus to avoid
unnecessary re-computation. In [11], Mouratidis et al. in-
vestigate the CNN monitoring problem in a road network,
in which the query point moves freely and the data objects’
positions are also changing dynamically. The basic idea of
[11] is to maintain a spanning tree originated from the query
point and to grow or discard branches of the spanning tree
according to the data objects and query point’s movements.

In-Route Nearest Neighbor Queries (IRNN) in [16, 18] is
designed for users that drive along a fixed path routinely.
As this kind of drivers would like to follow their preferred
routes, IRNN queries are proposed for finding nearest neigh-
bor with the minimum detour distance from the fixed route,
because they make the assumption that a commuter will re-
turn to the route after going to the nearest facility (e.g. gas
station) and will continue the journey along the previous
route. Recently, Path Nearest Neighbor (PNN) query pro-
posed by Chen et al. [1] is an extension of the IRNN query
to monitor the change of solution when user is moving along
the predefined path and when a user gets off the predefined
path and decides not to return back. To some extent, the
motivation of PNN monitoring problem is similar to that of
the CNN monitoring. However, PNN provide monitoring of
the NN to a dynamically changing path rather than a moving
query point. This is also the difference of continuous-BPD
query studied in this work and CNN query.

3. PRELIMINARY
3.1 Road network
In this work, road networks are modeled by connected and
undirected planar graphs G(V, E), where V is the set of ver-
tices and E is the set of edges. A weight can be assigned
to each edge to represent length or application specific fac-
tor such as traveling time obtained from mining the historic
traffic data [5]. Given two locations a, b in road networks,
the network distance between them is the length of their
shortest network path, i.e. a sequence of edges linking a and
b where the accumulated weight is minimal. When weight
associates factor such as traveling time, the lower bound
of network distance is not necessary the corresponding Eu-
clidean distance; thus the spatial indexes such as R-tree are
not effective.

We assume the network paths between all pairs have been
pre-computed and then make use of an encoding to reduce
storage cost from O(|V |3) to O(|V |1.5) [13]. This encoding
takes advantage of the fact that the shortest paths from a
vertex u to all of the remaining vertices can be decomposed
into subsets based on the first edges on the shortest paths to
them from u. The simplest way of representing the shortest
path information is to maintain an array A of size |V |× |V |.
The A[u, v] contains the first vertex on the shortest path
from u to v. Using A, the construction of shortest path
between u and v is performed by repeatedly visiting A[u′, v],
u′ = u for the first time and u′ = A[u′, v] in subsequence,
the time is proportional to the length to the path. The pre-
computed network paths between all pairs are suitable to
provide the network distance for two given vertices. But
they are not suitable to identify the vertices which are in a
certain distance to a given vertex, say u. In this situation,
we apply the method to expand a wavefront starting at u as
the Dijkstra’s algorithm.

The data points are embedded in networks and they may
be located in edges. If the network distances to the two
end vertices of an edge are known, it is straightforward to
derive network distance to any point in this edge. Thus, we
assume that all data points are in vertices for the sake of
clear description.

3.2 Problem Definition
Given any two locations a, b in road networks, the shortest
network path between them is denoted as SP (a, b) and the
length of SP (a, b) is denoted as sd(a, b). Given any two
locations u, v in the preferred path P (not necessarily a short
network path), the path between them along P is denoted
as P (u, v) and the length of P (u, v) is denoted as d(u, v). O
is a set of data points and < eo, o, ei > is a point detour to
o ∈ O where eo is the out-exit and ei is the in-exit. We use
a non-negative real number τ to represent detour distance
threshold.

Definition: Point Detour Given a preferred path P and
a data point set O in road networks, a point detour <
eo, o, ei > is the shortest network path between two exits
eo, ei ∈ P which passes the data point o ∈ O. The detour
distance of < eo, o, ei > is sd(eo, o) + sd(o, ei). ¤

Definition: Point Detour Cost Given a preferred path P
and a data point set O in road networks, the detour cost of a

detour < eo, o, ei >, eo,i ∈ P, o ∈ O, is sd(eo, o) + sd(o, ei)−
d(eo, ei), denoted as < eo, o, ei > .dc. ¤

In this work, point detour cost is also called detour cost for
simplicity.

Definition: Best Point Detour Query (BPD) Given a
preferred path P , a data point set O and a detour distance
threshold τ , BPD(O, P, τ) returns a detour < eo, o, ei >,
eo,i ∈ P, o ∈ O, such that < eo, o, ei > .dc is less than
the detour cost of any other point detour < e′o, o

′, e′i >,
e′o,i ∈ P, o′ ∈ O, where the detour distances of < eo, o, ei >
and < e′o, o

′, e′i > are not greater than τ . ¤

In BPD(O, P, τ), P is the query path and the detour returned
by BPD(O, P, τ) is the best point detour (BPD) relevant to
P .

Definition: Continuous Best Point Detour Query
(Continuous-BPD) Given a preferred path P from s to
t, O and τ , continuous-BPD query returns a set of update
locations in P which divide P into partitions, each partition
ξ together with a detour ξ.detour, such that at any location
c in a partition ξ, the BPD returned by BPD(O, Pct, τ) is
ξ.detour, where Pct = P (c, t) is the query path. ¤

4. BEST POINT DETOUR QUERY
Given a preferred path P from c to t, O and τ , BPD query
processing takes four steps.

1. Identify candidates from O whose network distances
to P are not greater than 0.5τ (section 4.1);

2. Compute detour cost lower bound for each candidate,
and the candidate with the minimum detour cost lower
bound is selected each time for next step. (section 4.2);

3. For each selected candidate from step 2, search the
local best point detour (the best point detour to this
candidate). (section 4.3).

4. Among local best point detours, the global best point
detour is returned and BPD query terminates. (sec-
tion 4.3).

4.1 Identify Candidate
The candidate criteria is whether a data point o has the
shortest network distance to P not greater than 0.5τ , i.e.
min∀e∈P (sd(o, e)) ≤ 0.5τ .

To find candidates, a set of vertices in P are selected as cen-
ters such that P is divided into a set of segments. If the
network distances from o to the two ends eh, ej of a path
segment P (eh, ej) are known, the candidature of o can be
determined. As the schematic example shown in figure 2,
the path segment P (eh, ej) is illustrated. Our objective
is to find all data points which have network distances to
P (eh, ej) less than 0.5τ . From eh, a browsing wavefront is
expanded in road networks as Dijkstra’s algorithm [4] and so
does ej . In concept, the browsed region is round as shown
in figure 2 where the radius is the network distance from
the center to the browsing wavefront, denoted as r. Once

c teh ej

o1

o2

o3

reh

rej

eh, e j are selected centres
P: user preferred path

P

Figure 2: Candidate Criteria.

reh +rej−d(eh, ej) is greater than τ , the expansion of brows-
ing wavefronts stops. It can be proved that the data points
outside the browsed region cannot have network distance to
P (eh, ej) less than τ , thus they can be pruned safely such
as o1. For the data points inside the browsed region such as
o2,3, they are candidates to the path segment P (eh, ej).

Lemma 1: Given a set O of data points, the detour distance
threshold τ and a preferred path P which is partitioned into
n segments by centers, i.e. a set of selected vertices in P ,
the candidates to the kth segment P (eh, ej) is

Ck = {o|sd(o, eh)+sd(o, ej)−d(eh, ej) ≤ τ, o ∈ O, eh,j ∈ P}.
(1)

Proof : As shown in figure 2, suppose there is a data
point o with sd(o, eh) + sd(o, ej) − d(eh, ej) > τ . Let en

be the closest exit in P (eh, ej) to o. According to trian-
gle inequality, we have sd(o, en) ≥ sd(eh, o) − sd(eh, en)
and sd(o, en) ≥ sd(ej , o) − sd(ej , en), thus 2sd(o, en) ≥
sd(o, eh) + sd(o, ej)− sd(eh, ej). Since sd(eh, ej) is network
shortest path distance, sd(eh, ej) ≤ d(eh, ej). Thus, the re-
lation 2sd(o, en) ≥ sd(o, eh) + sd(o, ej) − d(eh, ej) is still
true. From sd(o, eh) + sd(o, ej) − d(eh, ej) > τ , we have
2sd(o, en) > τ . Since it cannot satisfy the constraint on
detour distance, o is not a candidate to P (eh, ej). ¤

For some candidates in Ck, the network distances to both
eh or ej are known and for other candidates only the net-
work distance to either eh or ej is known when the browsing
wavefronts stop expanding. For example o2 in figure 2, only
the network distance to eh is known. If network distances
to eh,j are known, o2 may not be a candidate according to
Lemma 1. Due to the use of pre-computed network path
information as discussed in section 3.1, the cost is trivial to
compute network distances and examine all candidates.

To identify complete candidate set to the whole path of P ,
the candidates to individual segments are combined. Since
one data point may be candidate to more than one path
segments, such duplicate candidates are merged and purged.
The complete candidates to P is

C = {o|o ∈
n⋃

i=1

Ci}. (2)

o

e1 e2 e3e4

P

<e4,o,e3>.dc is less than <e1,o,e2>.dc

o

en e je i P

(a) detour cost lower bound (b) valid exits to o

ek eh

r = - d(o,en)
Browsed region

c t

P: user preferred path from c to t

Figure 3: Detour cost lower bound and valid exits.

The selection of centers impacts the performance of BPD
query processing. This issue is discussed later in section 4.4.

4.2 Detour Cost Lower Bound
We now have a set of candidates. To avoid refining all of
them, their detour cost lower bounds are calculated at trivial
cost. A candidate with less detour cost lower bound is more
likely to be the solution, thus should be refined first. See fig-
ure 3(a), suppose o is a candidate and its network distances
to four exits e1, e2, e3 and e4 in P are known. We can prove
that < e4, o, e3 > .dc is the lower bound of < e1, o, e2 > .dc.
We use a lemma to describe this relationship.

Lemma 2: Given a candidate o ∈ O and a preferred path
P , < e1, o, e2 > .dc must be greater than < e4, o, e3 > .dc if
e1,2 are in between e3,4 in P .

Proof : As shown in figure 3(a), < e4, o, e3 > .dc = sd(e4, o)+
sd(o, e3) − d(e4, e3) and < e1, o, e2 > .dc = sd(e1, o) +
sd(o, e2) − d(e1, e2). < e4, o, e3 > .dc− < e1, o, e2 > .dc =
(sd(e4, o) − sd(e1, o) − d(e4, e1)) + (sd(e3, o) − sd(e2, o) −
d(e2, e3)).

According to triangle inequality, it is true that sd(e4, o) −
sd(e1, o)−sd(e4, e1) ≤ 0 and sd(e3, o)−sd(e2, o)−sd(e2, e3) ≤
0. Since sd(e4, e1) is network shortest path distance, it must
be no more than d(e4, e1) and thus sd(e4, o) − sd(e1, o) −
d(e4, e1) ≤ 0 is held. For the same reason, we have sd(e3, o)−
sd(e2, o) − d(e2, e3) ≤ 0. As a consequence, < e4, o, e3 >
.dc− < e1, o, e2 > .dc ≤ 0, i.e. < e4, o, e3 > .dc is the lower
bound of < e1, o, e2 > .dc. ¤

Suppose o in figure 3(a) is a candidate to path segment
P (e1, e2), but not to P (c, e1) and P (e2, t). We have sd(e1, o)+
sd(o, e2)−d(e1, e2) ≤ τ , sd(c, o)+sd(o, e1)−d(c, e1) > τ and
sd(e2, o)+sd(o, t)−d(e2, t) > τ . Given a detour < eo, o, ei >,
eo,i must be in P (c, e2) or in P (e1, t) in order to satisfy the
constraint of τ . According to Lemma 2, if eo,i ∈ P (c, e2), the
detour cost lower bound of < eo, o, ei > is < c, o, e2 > .dc; if
eo,i ∈ P (e1, t), the detour cost lower bound of < eo, o, ei >
is < e1, o, t > .dc. Since the network distances from o to
e1,2 are already known, we only need to compute the net-
work distances from o to c, t using pre-computed network
distance information. In summary, we have the following
lemma:

Lemma 3: Given a preferred path P from c to t, o ∈ O is a
candidate to a path segment P (e1, e2) where e2 is closer to

t. The detour cost lower bound of o, denoted as o.dclb, can
be derived:

o.dclb = min(< c, o, e2 > .dc, < e1, o, t > .dc). (3)

Proof : As shown in figure 3(a), we assume that o is a
candidate to P (e1, e2) and not a candidate to P (c, e1) and
to P (e2, t) using Lemma 1. That is, sd(e1, o) + sd(o, e2) −
d(e1, e2) ≤ τ , sd(c, o)+sd(o, e1)−d(c, e1) > τ and sd(o, e2)+
sd(o, t)− d(e2, t) > τ . Given a detour < eo, o, ei >, if one of
eo,i is in P (c, e1) and the other is in P (e2, t), sd(eo, o) and
sd(o, ei) are greater than 0.5τ and thus the detour distance
of < eo, o, ei > must be greater than τ . Thus, we only
consider the situation that both eo,i are in P (c, e2) or in
P (e1, t). In case of P (c, e2) (or P (e1, t)), < c, o, e2 > .dc
(or < e1, o, t > .dc) is the detour cost lower bound of <
eo, o, ei > .dc according to Lemma 2. Thus, the minimum
of < c, o, e2 > .dc and < e1, o, t > .dc must the lower bound
of < eo, o, ei > .dc. ¤

For all candidates in C, their detour cost lower bounds are
computed and the one with the minimum value is selected
each time for next step.

4.3 Search Best Point Detour
For each candidate o from last step, the local best detour to
o is searched. Then among all found local best detours, the
global best detour is returned and the BPD query processing
terminates.

4.3.1 Valid Exits
Given a candidate o and a detour distance threshold τ , an
exit e ∈ P is valid to o only if at least one detour using
e to o has detour distance no greater than τ . The task is
to find all valid exits to o (at this point, only the network
distances from o to few centers are known). To minimize the
network scan for this purpose, we need to identify the closest
exit en ∈ P to o first, that is, sd(o, en) < sd(o, e′), e′ ∈
P − en. Suppose en is used in a detour to o, the other half
of the detour from o back to P (or from P to o) cannot
have network distance greater than τ − sd(o, en) in order to
satisfy constraint of τ . In specific, any exit whose network
distance to o is greater than τ − sd(o, en) is invalid.

Lemma 4: Given a preferred path P , the valid exits to a
data point o ∈ O, denoted as o.V E, is:

o.V E = {e|sd(o, e) ≤ τ−min∀ei∈P (sd(o, ei)), o ∈ Q, e ∈ P}.
(4)

Proof : We assume that sd(o, en) = min∀ei∈P (sd(o, ei)),
o ∈ O, en ∈ P . For any exit e ∈ P − en, if sd(o, e) >
τ −sd(o, en), we have sd(o, e)+sd(o, en) > τ . Thus, e is not
valid to o. ¤

By expanding a browsing wavefront from o as Dijkstra’s al-
gorithm, en is the first vertex in P which has the minimum
value among all vertices in the wavefront, i.e. wavefront will
expand next from en to en adjacent vertices. After sd(o, en)
is computed, the radius of the browsed region is no greater
than τ − sd(o, en) according to Lemma 4. An example is
shown in figure 3(b). ei,j are valid exits and ek,h are invalid
exits to o.

4.3.2 Test Valid Exit Combinations
Among the valid exits of o, the pair resulting in the detour
with the minimum detour cost is searched. It is costly to
test all possible combinations due to complexity |o.V E|2.
We propose the following lemma to reduce combinations to
be tested.

Lemma 5: Given a preferred path P and a data point
o ∈ O, suppose en is the closest exit in P to o. The valid exits
in P are separated by en into two groups o.V Eb and o.V Ea

where o.V Eb includes en and those exits visited earlier than
en when user is moving from c to x along P , and o.V Ea

includes en and those exits visited later than en. The best
point detour < eo, o, ei > must be formed by eo and ei from
different groups of o.V Eb and o.V Ea.

Proof : If eo and ei are both in o.V Eb, the detour cost of
< eo, o, ei > is sd(eo, o)+sd(o, ei)−d(eo, ei) which is greater
than sd(eo, o) + sd(o, en)− d(eo, en) according to Lemma 2.
So < eo, o, ei > can not be the best point detour of o. It is
same if eo and ei are both in o.V Ea. Therefore, eo and ei

must be from different groups of o.V Eb and o.V Ea. ¤

From Lemma 5. the local best detour to o can be found by
testing all pairs of exits, one from o.V Ea and the other from
o.V Eb. In our method, such all pair test is prevented. We
test exits in o.V Eb one by one according to the distance to
en. The farther one is tested earlier. For each exit eo in
o.V Eb, it forms pairs with the exits in o.V Ea in the order
from the one far from en to the one close to en and this pro-
cess stops once the first exit pair satisfies the constraint of τ ;
this exit pair forms the best detour to o using eo, denoted as
eo.BPD; the correctness can be proved by applying Lemma
2. Among all e ∈ o.V Eb, the e.BPD with minimum detour
cost is the local best detour to o we are searching for.

So far, we calculated local best detour to one candidate.
Any candidates in C can be pruned if they have detour cost
lower bounds greater than the detour cost of this local best
detour. From the remaining candidates in C, the one with
the minimum lower bound is refined in this step. The ter-
mination condition of BPD query is when no candidate is
left in C. Before termination, the one with the minimum
detour cost among all computed local best detours is the
global best detour and is returned. In addition, when the
BPD with the second minimum detour cost is required, the
above method can be easily adapted.

4.4 Efficiency Issues
Suppose data points are uniformly distributed in the net-
works and the exits in P are uniformly distributed as well.
We now analyze BPD complexity by estimating the cost
in each step. In the first step, the network browsing is per-
formed by centers to identify candidates. In a given network
G(V, E), the complexity is O(n(V lg(V)+E)) where n is the
number of centers. The second step calculates the detour
cost lower bound for each candidate. The cost is O(y ∗m)
where y is the number of candidates and m is the number
of vertices in network path from each candidate to c and t.
In the third step, the network is browsed from selected can-
didate to identify the valid exits in P and local best detour
is refined by testing combinations of valid exits. The cost is

O(x∗ (V lg(V)+E)+x∗ (τ/ρ)2) where the constant ρ is the
density of exits in query path P and x is the number of can-
didates to be refined. By considering above all, BPD query
processing algorithm is in time complexity O(n ·C1 + y ·C2)
where C1 = V lg(V)+E and C2 = m+V lg(V)+E +(τ/ρ)2.
Clearly, the number of centers and the number of candidates
determine the overall cost of BPD query processing.

In one extreme case, every vertex in P is a center. The can-
didate set is minimized but the number of centers is max-
imized. Since both candidates and centers need to browse
the networks and these operations dominate the BPD query
processing, the overall performance maybe ruined, in partic-
ular in case of sparse data points. In the other extreme case,
only two ends of P , i.e. source and destination, are selected
as centers (as does in [1]). While the number of centers is
minimized the candidate set may be very large. The optimal
selection of centers can be estimated using linear program-
ming. Suppose {e1 = c, e2.., en−1, en = t} are exits in path
P in the order from c to x. Let A be a n× n matrix where
the ith column corresponds to ei, so does the ith row. In A,
the entry aij = {1, 0}; aij = 1 if ith, jth exits are adjacent
centers, i.e. no exits in between them are centers, aij = 0
otherwise. Our goal is to minimize the objective function

ω =
∑

(aij
1

4
π(dij + τ)2λ) +

∑
aij . (5)

subject to i < j,
∑n

j=1 a0j = 1,
∑n

i=1 ai0 = 1,
∑n

j=1 aij ≤ 1,∑n
i=1 aij ≤ 1, and

∑n
j=1 aij =

∑n
k=1 aki. λ is a constant to

indicate the average number of data points per unit area in
space. We use

∑
(aij

1
4
π(dij + τ)2λ) to estimate the number

of candidates and
∑

aij to estimate the number of centers.
Considering the online processing, the time cost to find opti-
mal selection of centers is not practical by solving the objec-
tive function. Thus, we simplify the objective function (5)
by assuming the gaps between between adjacent centers are
equal and the vertices in P are uniformly distributed. Our
aim is changed to find the optimal number of centers. Then,
we have

ω(n) = n(
1

4
π(

P.l

n
+ τ)2λ) + n. (6)

where P.l is the length of P and n is the number of centers.
P.l is a constant and n is the only independent variable of
the objective function. The n resulting in the minimum ω
can be found using the derivative of the function (6)

ω(n)′ =
∂ω

∂n
= 0. ⇒ 2n3 − πλτnP.l − πλP.l2 = 0. (7)

This cubic function can be directly solved by applying gen-
eral formula of roots. Then, n uniformly distributed loca-
tions (including the source and destination) are selected in
P as the centers. If a selected location is not on an exit, an
auxiliary point is inserted as a virtual exit.

5. CONTINUOUS-BPD QUERY
The solution of a BPD query is relevant to the query path
which is from user’s current location to the destination along
the preferred path. If user’s location does not change, the
solution is valid. However, when user is moving, the query
path keeps changing and consequently the solution of a BPD
query may change at some point. It is impractical to exe-
cute BPD query repeatedly to monitor the update of BPD

o

e ieo

o

e ieo

s t
(a)

o

e ieo

o

e ieo

s t
(b)

a b

Pct

Pct

c

Pct

Figure 4: In the case of query path Pct.

without a deliberate scheme. This motivates the continuous-
BPD Query.

Continuous-BPD query is processed by running a BPD query
first where Pct = P (s, t). Suppose < eo, o, ei > is the BPD
returned by BPD query. Any other detour using out-exit be-
fore eo is impossible to replace < eo, o, ei > as a BPD when
a user is moving along P from s to t. Thus, such detours
can be pruned safely. To prove this, let < e′o, o

′, e′i > be a
detour to o′ (equal to o or not) where e′o is an exit before eo,
and e′i can be any exit. An example is shown in figure 4(a).
Since < eo, o, ei > is the best detour, < e′o, o

′, e′i > .dc must
be greater than < eo, o, ei > .dc. When a user is moving
from s to e′o, < e′o, o

′, e′i > .dc remains the same. When
the user passes e′o before reaching eo, < e′o, o

′, e′i > .dc in-
creases since the user has to turn way back in order to use
detour < e′o, o

′, e′i >. At the same time, < eo, o, ei > .dc
remains the same. Thus, < eo, o, ei > is still the best point
detour. That is, no update location exists from s to eo and
the detours with out-exit before eo can be pruned.

Then, the best detour relevant to Pct starting at eo (i.e.
Pct = P (eo, t)) is searched by executing a BPD query, see
the example in figure 4(b). Let < e′′o , o′′, e′′i > be such best
detour. Our aim is to find the update location by pass-
ing which < e′′o , o′′, e′′i > replaces < eo, o, ei > to be BPD.
As discussed above, < eo, o, ei > .dc increases when the
user passes eo and moves forward. Once < eo, o, ei > .dc is
greater than < e′′o , o′′, e′′i > .dc, the current location of user
is the update location, i.e. the location 0.5(< e′′o , o′′, e′′i >
.dc− < eo, o, ei > .dc) after eo. However, the update loca-
tion found by this way is not always valid.

See an example in figure 4(b), if the update location is in be-
tween eo and e′′o such as a, it is valid; if the update location is
after e′′o such as b, it is invalid. Let us see why b is invalid. As
discussed above, 0.5(< e′′o , o′′, e′′i > .dc− < eo, o, ei > .dc) is
the difference from eo to b, i.e. d(eo, b). Since d(eo, e

′′
o) ≤

d(eo, b) and d(eo, b) = 0.5(< e′′o , o′′, e′′i > .dc− < eo, o, ei >
.dc), we have 2d(eo, e

′′
o)+ < eo, o, ei > .dc is no greater than

< e′′o , o′′, e′′i > .dc, in specific, < e′′o , o′′, e′′i > .dc is greater
than < eo, o, ei > .dc when user is at location e′′o . This is
also true when user passes e′′o and moves forward to b since
the detour costs for both increases by d(e′′o , b). Thus, when
user passes b, < e′′o , o′′, e′′i > cannot replace < eo, o, ei > to
be BPD. So, b is an invalid update location. If the update

o

e ieo

o
e ieos

t
Pcx

(a)

Pcx

c x
c x

o

e ieo

o
e ieos

t
(b)

Pcx

Pcx

c x

c x
Pcxc x

u'

u

Pcxc x

Figure 5: In the case of query path Pcx.

location such as b is invalid, the detour < e′′o , o′′, e′′i > is
discarded and we examine the second best detour relevant
to current Pct (i.e. P (eo, t)).

If the update location such as a is valid, < e′′o , o′′, e′′i > is the
BPD after a. It is interesting to note that no other update
location exists in between eo and a. This can be proved by
contradiction. Suppose a detour < e∗o, o∗, e∗i > relevant to
Pct = P (eo, t) has a valid update location a∗ which is be-
fore a. That is, when the user passes a∗, the best detour is
< e∗o, o∗, e∗i >. This happens only if < e′′o , o′′, e′′i > .dc
is greater than < e∗o, o∗, e∗i > .dc. This conflicts with
the situation that < e′′o , o′′, e′′i > .dc is BPD relevant to
Pct = P (eo, t). In summary, once we determine the update
location such as a of < e′′o , o′′, e′′i > is valid, it is the first
update location. This update location is recorded in the so-
lution together with < e′′o , o′′, e′′i >. Then, we go to identify
next update location in the same way as though the source is
at the newly identified update location such as a, and since
the BPD is already known such as < e′′o , o′′, e′′i >, the next
query path to be processed is P (e′′o , t), see figure 4(b).

5.1 A Practical Situation
In this section, we study the continuous-BPD query in the
situation where the destination is too far away, but the in-
terest of a user may be the BPD available within a certain
distance δ. This situation asks for techniques additional
to the typical continuous-BPD query processing. Since the
query path Pct is always from user’s current location c to
destination t, the best point detour < eo, o, ei > relevant to
P must be the best point detour relevant to Pct until user
passes eo. This is not true to the query path Pcx which is
from user’s current location c to x, the location δkm ahead
along P , and d(c, t) > δ. That is, only the detours not far
from user’s current location are considered.

When user’s current location is s, a BPD query is executed
for the BPD relevant to Pcx. As shown in the example in
figure 5(a), < eo, o, ei > is the BPD. When user arrives
at eo, Pcx changes from P (c, x) to P (c′, x′) and a BPD
query is executed for query path P (c′, x′). Different from
the case of Pct, update location may exist in between s and
eo. This is because some detours such as < e′o, o

′, e′i > ini-
tially irrelevant to Pcx = P (c, x) becomes relevant when Pcx

changes to P (c′, x′). Suppose < e′o, o
′, e′i > .dc is less than

< eo, o, ei > .dc. For < e′o, o
′, e′i >, the update location is

the location u′ which is d(e′i, x
′)km before eo. When user

passes u′, < e′o, o
′, e′i > turns to be relevant to the query

path and replaces < eo, o, ei > to be the BPD. If several de-
tours have update locations in between s to eo, they all need
to be identified by the same BPD query and the one with
the earliest update location (i.e. the update location visited
first by user when moving from s to t along P) is recorded in
solution together with the associated update location. Sup-
pose the update location u′ of < e′o, o

′, e′i > is the earliest.
Then the next update location is searched as if u′ is the
source, and since the BPD < e′o, o

′, e′i > is already known,
the next query path to be processed is P (c′′(= e′o), x

′′), see
figure 5(a).

If no update location can be found in between s and eo,
we execute a BPD query for query path P (c′′(= ei), x

′′) as
shown in figure 5(b), and let the BPD be < e′′o , o′′, e′′i >.
Two situations need to be considered. In the first situ-
ation, < e′′o , o′′, e′′i > .dc is less than < eo, o, ei > .dc.
For < e′′o , o′′, e′′i >, the update location u′′ is d(e′′, x′′)km
before ei. In the second situation, < e′′o , o′′, e′′i > .dc is
greater than < eo, o, ei > .dc. For < e′′o , o′′, e′′i >, the up-
date location u′′ is d(e′′, x′′)km before ei (after this loca-
tion, < e′′o , o′′, e′′i > becomes relevant to query path), or
0.5(< e′′o , o′′, e′′i > .dc− < eo, o, ei > .dc)km after eo (This is
the situation that user already passed eo and need turn way
back to eo in order to use < eo, o, ei >, thus < eo, o, ei > .dc
increases. If user reaches location 0.5(< e′′o , o′′, e′′i > .dc− <
eo, o, ei > .dc)km after eo, < e′′o , o′′, e′′i > .dc will be less
than < eo, o, ei > .dc). From these two locations, the later
one (the location closer to destination) is u′′.

Now, we discuss the situation that there is no detour satis-
fying τ constraint for a query path. Suppose the first such
query path Pcx is P (s, x). In this situation, we will exe-
cute the BPD query for next query path which is starting
at x. This is repeated until the first detour(s) satisfying
τ constraints. Let < eo, o, ei > be the BPD. As discussed
above, a BPD query is executed for the next query path
Pcx starting at eo and ei (as in figure 5(b)). If no detour
satisfying τ constraint except < eo, o, ei >, we may need to
find the location, say s′, after ei. If Pcx starts at s′, the
detour distance of < eo, o, ei > would fail to satisfy the τ
constraint. This is because that the detour distance begins
counting when user leaves the query path and stops until
user returns back, i.e. the detour cost of < eo, o, ei > is
d(s′, eo) + sd(eo, o) + sd(o, ei) + d(ei, s

′). s′ is an update
location. Before s′, the best point detour is < eo, o, ei >,
and after s′, we start to search a new best point detour for
query path starting at s′.

When the current location c is close to the destination and
d(c, t) ≤ δ, the query path changes to Pct and the techniques
discussed in section 5 are applied.

5.2 Efficiency Issues
Theorem 1: The continuous-BPD query is answered by
searching BPDs relevant to a number of query paths; for
each query path, a BPD query is executed. The number
of the query paths to be processed (same as the number
BPD queries to be executed) is optimal, i.e. errors may be
introduced if the BPD relevant to any such query path is

missed.

Proof : First, we prove the number of query paths to be
processed in the case of Pct is optimal. The BPD queries
are executed for query path starting at every out-exit of
each BPD in solution and the source location, see figure 4.
Suppose the query path P (eo, t) is not processed. Thus, the
relevant BPD < e′′o , o′′, e′′i > is unknown. The possibility
exists that the out-exit of the relevant BPD is extremely
close to eo and the update location such as a is also ex-
tremely close to eo. Thus, if the query path P (eo, t) is not
processed, this situation can not be surely avoided. Second,
we can prove the number of query paths to be processed in
the practical situation discussed in section 5.1 is optimal in
the similar way. ¤

Thus, the cost of continuous-BPD query processing is based
on the efficiency of BPD query processing. In the above
discussion, BPD query algorithm is invoked and executed
from scratch whenever it is necessary. A drawback is that
the same data points and centers are potentially processed
repeatedly. An improvement can be achieved by executing
a single BPD query and store the intermediate results for
subsequent processing. To do that, continuous-BPD query
first runs a BPD query for the preferred path P from s to t.
All candidates as well as the information after the refinement
are recorded. The situation in case of Pct is straightforward.
Whenever the best detour is required, the stored information
is used for quick response. The stored information about the
detour is discarded once it is with invalid update location or
with out-exit before the out-exit of the current best detour.

In the practical situation as discussed in section 5.1, the
continuous-BPD query processing is started by processing
a BPD query where the query path is the preferred path
P from s to t. Instead of searching the BPD relevant to
P , the execution pauses after the first step as described in
section 4 and a set of candidates are stored. Each time when
the BPD relevant to Pcx is requested, we only examine the
candidate data points whose network distances to Pcx less
than 0.5τ using the method similar to Lemma 1. Among
the qualified candidates, the one with the minimum detour
cost lower bound is selected and processed in the third step.
Given a candidate o in the third step, the valid exits are
searched from Pcx; then the o’s local best detour is found
and eventually the global BPD relevant to Pcx is identified.

6. EXPERIMENTS
In this section, we conduct experiments on data sets of Cal-
ifornia Road Network (CRN) and City of Oldenburg Road
Network (ORN)2, which contain 21,048 vertices and 6,105
vertices respectively and are stored as adjacency lists. The
length of each road segment is derived using the positions
of the end vertices specified in geographic coordinate. All
algorithms are implemented in Java and tested on a win-
dows platform with Intel Core2 CPU (2.13GHz) and 2GB
memory. In real scenarios, the number of data points such
as a supermarket and MacDonald’s are much less than ver-
tices of the underlying networks. Thus, 10% of the vertices
from road network are randomly selected to constitute the

2www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

Table 1: Parameter setting
Name CRN (km) ORN (km)
detour distance
threshold τ

4-40/default 12 2-20/default 10

query path for
BPD Pct

100-600/default
250

40-100/default
80

preferred path for
continuous-BPD P

250 80

query path length
for continuous-
BPD δ

50-250/default
∞

20-80/default ∞

set O of data points. For two reasons, the networks reside
in memory in our experiments for running Dijkstra’s algo-
rithm. First, the storage occupied by CRN/ORN in memory
is less than 1MB which is a quite small even for most hand-
hold devices today; second, the main purpose of experiments
is to compare the trend of the performance between ours
and the simple algorithm; such comparison is independent
of network residence (i.e. memory-based or disk-based). We
also construct all-pair shortest path index as [13]. The ex-
periment results shown are average of 20 independent testes
with different query paths. The main metric we adopt is
CPU time. The parameter settings are listed in table 1.

6.1 Best Point Detour Query
An algorithm based on simple extension of PNN [1] is also
implemented, called EPNN. EPNN takes four steps. First,
all candidates satisfying the detour distance threshold con-
straint are identified using bi-direction network expansion
method (i.e. the special case of the method discussed in sec-
tion 4.1 where only source and destination are centers). To
be fair, EPNN does not scan the entire networks as in [1].
Second, EPNN calculates the network distance from each
candidate o to P by Dijkstra’s algorithm to find the closest
exit en to o. Third, at both side of en in P , we make a range
query to find all exits whose network distances to en is less
than τ . The exits before en form a set o.V Eb and the exits
after en form a set o.V Ea. EPNN only examines the detours
which are formed by out-exit from o.V Eb and in-exit from
o.V Ea. The local BPD detour to o is identified. When all
candidates have been refined, the global BPD is returned by
EPNN.

6.1.1 Effect of detour distance threshold τ
In figure 6(a) 6(b), the experiment results demonstrate the
effect of τ to the detour cost of BPD and PNN-detour (recall
the PNN-detour not allowing different exit while Best point
detour (BPD) allowing different exits). The detour cost of
PNN-detour is constant at varying settings of τ since it al-
ways is 2d(O, P) (i.e. 2min∀o∈O,∀e∈P (sd(o, e))); in contrast,
BPD has decreasing detour cost. In figure 6(a), the detour
cost of PNN-detour is 8km. When τ = 12km, the detour
cost of BPD is 4km, 50% improvement to that of PNN-
detour. When τ = 32km, the detour cost of BPD is 1km,
eight times improvement to that of PNN-detour. The sim-
ilar trend appears in figure 6(b) on ORN. Figure 6(c) 6(d)
show the CPU time used by BPD and EPNN. The longer
τ means more candidates since more data points can sat-
isfy the τ constraint. Thus, the CPU time increases when τ
increases.

 0

 2

 4

 6

 8

 10

 8 12 16 20 24 28 32 36 40

M
in

im
al

 D
et

ou
r

C
os

t (
km

)

Detour distance threshold (km)

BPD
PNN-detour

(a) CRN

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2 4 6 8 10 12 14 16 18 20

M
in

im
al

 D
et

ou
r

C
os

t (
km

)

Detour distance threshold (km)

BPD
PNN-detour

(b) ORN

 0

 1

 2

 3

 4

 5

 4 8 12 16 20 24 28 32 36 40

C
P

U
 T

im
e

(s
ec

)

Detour distance threshold (km)

BPD
EPNN

(c) CRN

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16 18 20

C
P

U
 T

im
e

(s
ec

)

Detour distance threshold (km)

BPD
EPNN

(d) ORN

 0

 5

 10

 15

 20

 25

 150 200 250 300 350 400 450 500 550 600

C
P

U
 T

im
e

(s
ec

)

Query path length (km)

BPD
EPNN

(e) CRN

 0

 0.5

 1

 1.5

 2

 2.5

 40 50 60 70 80 90 100

C
P

U
 T

im
e

(s
ec

)

Query path length (km)

BPD
EPNN

(f) ORN

 0

 1

 2

 3

 4

 5

 150 200 250 300 350 400 450 500 550 600

C
P

U
 T

im
e

(s
ec

)

Query path length (km)

BPD with dclb
BPD without dclb

(g) CRN

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 50 60 70 80 90 100

C
P

U
 T

im
e

(s
ec

)

Query path length (km)

BPD with dclb
BPD without dclb

(h) ORN

Figure 6: Experiment results of BPD query processing.

6.1.2 Effect of query path length
In figure 6(e) 6(f), the performance of BPD and EPNN is
tested when the length of query path varies. Since the longer
query path causes more data points to be processed, thus the
CPU time used is expected to be longer for both BPD and
EPNN. This point has been verified in the experiment re-
sults. At a given setting of query path length, the CPU time
used by EPNN is much longer than BPD for two reasons.
The first is due to the much larger number of candidates by
using bi-direction network expansion method (as discussed
in section 4.4), and the second is that EPNN has to refine all
candidates since no detour cost lower bound is used. As a
consequence, the performance of BPD beats that of EPNN
by almost one order of magnitude. To a great extent, this
result demonstrates the importance of smart selection of cen-
ters and the necessariness of detour cost lower bound.

6.1.3 Effect of detour cost lower bound
This experiment tests the effect of detour cost lower bound
(dclb) to the performance. The dclb is used to prune can-
didates and to ensure the candidates are refined in proper
order. We run BPD with and without support of dclb and
the results are shown in figure 6(g) 6(h). We can see the
performance is accelerated by 2-4 times by using dclb.

6.2 Continuous-BPD Query
The continuous-BPD can be processed by executing BPD
query in two ways as discussed in section 5. In the first way,
BPD query is executed only once and the intermediate re-
sults are stored for subsequent processing and in the second
way, BPD query is invoked and executed from scratch when-
ever it is necessary. In figure 7(a) 7(b) 7(c) 7(d), the former
is denoted as continuous-BPD-I and the latter is denoted
as continuous-BPD-II. As exhibited in figure 7(a) 7(b), the
continuous-BPD-I performs always better than continuous-
BPD-II by around three times. When the query path length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250

C
P

U
 T

im
e

(s
ec

)

Query path length (km)

Continues-BPD-I
Continues-BPD-II

(a) CRN

 0

 0.5

 1

 1.5

 2

 20 35 50 65 80

C
P

U
 T

im
e

(s
ec

)

Query path length (km)

Continues-BPD-I
Continues-CBPD-II

(b) ORN

 0

 10000

 20000

 30000

 40000

 50000

 50 100 150 200 250

th
e

N
um

be
r

of
 V

is
ite

d
N

od
es

Query path length (km)

Continues-BPD-I
Continues-BPD-II

(c) CRN

 0

 5000

 10000

 15000

 20000

 25000

 30000

 20 35 50 65 80

th
e

N
um

be
r

of
 V

is
ite

d
N

od
es

Query path length (km)

Continues-BPD-I
Continues-CBPD-II

(d) ORN

 3.6

 4

 4.4

 4.8

 50 100 150 200 250

D
et

ou
r

C
os

t (
km

)

Query path length (km)

Continues-BPD

(e) CRN

 0.7

 0.8

 0.9

 1

 1.1

 20 35 50 65 80

D
et

ou
r

C
os

t (
km

)

Query path length (km)

Continues-BPD

(f) ORN

Figure 7: Experiment results of continuous-BPD
query processing.

increases, the performance is getting better since the num-
ber of BPD queries to be processed tends to decrease (i.e.
we need search BPD for less query paths). One interesting
phenomenon is that the performance of continuous-BPD-II
has a hump. The reason is that longer query path causes
more data points to be processed in each BPD query. So,
even though the number of BPD queries to be executed de-
creases, the overall effect is a worse performance at some
settings of query path length.

Figure 7(c) 7(d) demonstrate the total number of network
vertices accessed during the continuous-BPD query process-
ing. The continuous-BPD-I has constant low network access
since it runs the first step of BPD once only and thus ac-
cess the network once. In contrast, the continuous-BPD-II
accesses network whenever it is necessary such that same
region may be touched repeatedly. In addition, continuous-
BPD-II has a hump in the network access. The reason is
same as the hump in performance.

We also test the detour cost of BPD when query path length
changes. Since more choices are available in case of a longer
query path, the detour cost should tend to decrease. This
is verified by the experiment results in figure 7(e) 7(f). The
memory cost for storing intermediate result in continuous-
BPD-I is only in level of kilobytes in our experiments and
thus can be ignored.

7. CONCLUSION
A point detour is a temporary deviation from a user pre-
ferred path P (not necessarily a shortest network path) for
visiting a data point. In most real scenarios, different exits
are allowed and what users concern is the extra traveling
distance introduced. This work aims to efficiently find the
best detour point (i.e. the one introducing the minimum
extra traveling) on the path to be traveling on along P . Ef-
ficient techniques have developed to identify BPD and fur-
ther divide P into partitions by a set of update locations. In
the same partition, user has the same BPD. The efficiency
studies and experiments have verified the superiority of the
proposed techniques.

8. REFERENCES
[1] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu.

Monitoring path nearest neighbor in road networks. In
Proceedings of SIGMOD, pages 591–602, 2009.

[2] H.-J. Cho and C.-W. Chung. An efficient and scalable
approach to cnn queries in a road network. In
Proceedings of VLDB, pages 865–876, 2005.

[3] K. Deng, X. Zhou, H. T. Shen, K. Xu, and X. Lin.
Surface k-nn query processing. In Proceedings of
ICDE, page 78, 2006.

[4] E. W. Dijkstra. A note on two problems in connection
with graphs. Numerische Math, 1:269–271, 1959.

[5] H. Gonzalez, J. Han, X. Li, M. Myslinska, and
J. Sondag. Adaptive fastest path computation on a
road network: A traffic mining approach. In
Proceedings of VLDB, pages 794–805, 2007.

[6] G. R. Hjaltason and H. Samet. Distance browsing in
spatial databases. ACM Trans. Database Syst.,
24(2):265–318, 1999.

[7] H. Jagadish, B. Ooi, K.-L. Tan, C. Yu, and R. Zhang.

idistance: An adaptive b+-tree based indexing method
for nearest neighbour search. TODS, 30(2):364–397,
2005.

[8] C. S. Jensen, J. Kolarvr, T. B. Pedersen, and
I. Timko. Nearest neighbor queries in road networks.
In Proceedings of ACM GIS, pages 1–8, 2003.

[9] M. Kolahdouzan and C. Shahabi. Voronoi-based k
nearest neighbor search for spatial network databases.
In Proceedings of VLDB, pages 840–851, 2004.

[10] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and
S.-H. Teng. On trip planning queries in spatial
databases. In Proceedings of SSTD, pages 273–290,
2005.

[11] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou.
Conceptual partitioning: an efficient method for
continuous nearest neighbor monitoring. In
Proceedings of SIGMOD, pages 634–645, 2005.

[12] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proceedings of SIGMOD, pages
71–79, 1995.

[13] H. Samet, J. Sankaranarayanan, and H. Alborzi.
Scalable network distance browsing in spatial
databases. In Proceedings of SIGMOD, pages 43–54,
2008.

[14] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh.
A road network embedding technique for k-nearest
neighbor search in moving object databases. In
Proceedings of ACM GIS, pages 94–100, 2002.

[15] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi.
The optimal sequenced route query. In VLDB Journal,
pages 765–787, 2008.

[16] S. Shekhar and J. S. Yoo. Processing in-route nearest
neighbor queries: a comparison of alternative
approaches. In Proceedings of ACM GIS, pages 9–16,
2003.

[17] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest
neighbor search. In Proceedings of VLDB, pages
287–298, 2002.

[18] J. S. Yoo and S. Shekhar. In-route nearest neighbor
queries. In GeoInformatica, volume 9, pages 117–137,
2005.

