5,188 research outputs found

    GIRNet: Interleaved Multi-Task Recurrent State Sequence Models

    Full text link
    In several natural language tasks, labeled sequences are available in separate domains (say, languages), but the goal is to label sequences with mixed domain (such as code-switched text). Or, we may have available models for labeling whole passages (say, with sentiments), which we would like to exploit toward better position-specific label inference (say, target-dependent sentiment annotation). A key characteristic shared across such tasks is that different positions in a primary instance can benefit from different `experts' trained from auxiliary data, but labeled primary instances are scarce, and labeling the best expert for each position entails unacceptable cognitive burden. We propose GITNet, a unified position-sensitive multi-task recurrent neural network (RNN) architecture for such applications. Auxiliary and primary tasks need not share training instances. Auxiliary RNNs are trained over auxiliary instances. A primary instance is also submitted to each auxiliary RNN, but their state sequences are gated and merged into a novel composite state sequence tailored to the primary inference task. Our approach is in sharp contrast to recent multi-task networks like the cross-stitch and sluice network, which do not control state transfer at such fine granularity. We demonstrate the superiority of GIRNet using three applications: sentiment classification of code-switched passages, part-of-speech tagging of code-switched text, and target position-sensitive annotation of sentiment in monolingual passages. In all cases, we establish new state-of-the-art performance beyond recent competitive baselines.Comment: Accepted at AAAI 201

    A Convolutional Neural Network for Modelling Sentences

    Full text link
    The ability to accurately represent sentences is central to language understanding. We describe a convolutional architecture dubbed the Dynamic Convolutional Neural Network (DCNN) that we adopt for the semantic modelling of sentences. The network uses Dynamic k-Max Pooling, a global pooling operation over linear sequences. The network handles input sentences of varying length and induces a feature graph over the sentence that is capable of explicitly capturing short and long-range relations. The network does not rely on a parse tree and is easily applicable to any language. We test the DCNN in four experiments: small scale binary and multi-class sentiment prediction, six-way question classification and Twitter sentiment prediction by distant supervision. The network achieves excellent performance in the first three tasks and a greater than 25% error reduction in the last task with respect to the strongest baseline

    Improving Distributed Representations of Tweets - Present and Future

    Full text link
    Unsupervised representation learning for tweets is an important research field which helps in solving several business applications such as sentiment analysis, hashtag prediction, paraphrase detection and microblog ranking. A good tweet representation learning model must handle the idiosyncratic nature of tweets which poses several challenges such as short length, informal words, unusual grammar and misspellings. However, there is a lack of prior work which surveys the representation learning models with a focus on tweets. In this work, we organize the models based on its objective function which aids the understanding of the literature. We also provide interesting future directions, which we believe are fruitful in advancing this field by building high-quality tweet representation learning models.Comment: To be presented in Student Research Workshop (SRW) at ACL 201
    • …
    corecore