36,354 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Predictive Coding for Dynamic Visual Processing: Development of Functional Hierarchy in a Multiple Spatio-Temporal Scales RNN Model

    Get PDF
    The current paper proposes a novel predictive coding type neural network model, the predictive multiple spatio-temporal scales recurrent neural network (P-MSTRNN). The P-MSTRNN learns to predict visually perceived human whole-body cyclic movement patterns by exploiting multiscale spatio-temporal constraints imposed on network dynamics by using differently sized receptive fields as well as different time constant values for each layer. After learning, the network becomes able to proactively imitate target movement patterns by inferring or recognizing corresponding intentions by means of the regression of prediction error. Results show that the network can develop a functional hierarchy by developing a different type of dynamic structure at each layer. The paper examines how model performance during pattern generation as well as predictive imitation varies depending on the stage of learning. The number of limit cycle attractors corresponding to target movement patterns increases as learning proceeds. And, transient dynamics developing early in the learning process successfully perform pattern generation and predictive imitation tasks. The paper concludes that exploitation of transient dynamics facilitates successful task performance during early learning periods.Comment: Accepted in Neural Computation (MIT press

    Survey on Vision-based Path Prediction

    Full text link
    Path prediction is a fundamental task for estimating how pedestrians or vehicles are going to move in a scene. Because path prediction as a task of computer vision uses video as input, various information used for prediction, such as the environment surrounding the target and the internal state of the target, need to be estimated from the video in addition to predicting paths. Many prediction approaches that include understanding the environment and the internal state have been proposed. In this survey, we systematically summarize methods of path prediction that take video as input and and extract features from the video. Moreover, we introduce datasets used to evaluate path prediction methods quantitatively.Comment: DAPI 201

    Hysteresis and economics - taking the economic past into account

    Get PDF
    The goal of this article is to discuss the rationale underlying the application of hysteresis to economic models. In particular, we explain why many aspects of real economic systems are hysteretic is plausible. The aim is to be explicit about the difficulties encountered when trying to incorporate hysteretic effects into models that can be validated and then used as possible tools for macroeconomic control. The growing appreciation of the ways that memory effects influence the functioning of economic systems is a significant advance in economic thought and, by removing distortions that result from oversimplifying specifications of input-output relations in economics, has the potential to narrow the gap between economic modeling and economic reality

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore