1,482 research outputs found

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Turning Emergency Plans into Executable Artifacts

    Get PDF
    ISBN: 978-0-692-21194-6 Available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) LicenseInternational audienceOn the way to the improvement of Emergency Plans, we show how a structured specification of the response procedures allows transforming static plans into dynamic, executable entities that can drive the way different actors participate in crisis responses. Additionally, the execution of plans requires the definition of information access mechanisms allowing execution engines to provide an actor with all the information resources he or she needs to accomplish a response task. We describe work in progress to improve the SAGA's Plan definition Module and Plan Execution Engine to support information-rich plan execution

    An Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    A programming system for process coordination in virtual organisations

    Get PDF
    PhD thesisDistributed business applications are increasingly being constructed by composing them from services provided by various online businesses. Typically, this leads to trading partners coming together to form virtual organizations (VOs). Each member of a VO maintains their autonomy, except with respect to their agreed goals. The structure of the Virtual Organisation may contain one dominant organisation who dictates the method of achieving the goals or the members may be considered peers of equal importance. The goals of VOs can be defined by the shared global business processes they contain. To be able to execute these business processes, VOs require a flexible enactment model as there may be no single ‘owner’ of the business process and therefore no natural place to enact the business processes. One solution is centralised enactment using a trusted third party, but in some cases this may not be acceptable (for instance because of security reasons). This thesis will present a programming system that allows centralised as well as distributed enactment where each organisation enacts part of the business process. To achieve distributed enactment we must address the problem of specifying the business process in a manner that is amenable to distribution. The first contribution of this thesis is the presentation of the Task Model, a set of languages and notations for describing workflows that can be enacted in a centralised or decentralised manner. The business processes that we specify will coordinate the services that each organisation owns. The second contribution of this thesis is the presentation of a method of describing the observable behaviour of these services. The language we present, SSDL, provides a flexible and extensible way of describing the messaging behaviour of Web Services. We present a method for checking that a set of services described in SSDL are compatible with each other and also that a workflow interacts with a service in the desired manner. The final contribution of this thesis is the presentation of an abstract architecture and prototype implementation of a decentralised workflow engine. The prototype is able to enact workflows described in the Task Model notation in either a centralised or decentralised scenario

    A Model for Process Oriented Risk Managenent

    Get PDF
    corecore