14 research outputs found

    Rain Removal in Traffic Surveillance: Does it Matter?

    Get PDF
    Varying weather conditions, including rainfall and snowfall, are generally regarded as a challenge for computer vision algorithms. One proposed solution to the challenges induced by rain and snowfall is to artificially remove the rain from images or video using rain removal algorithms. It is the promise of these algorithms that the rain-removed image frames will improve the performance of subsequent segmentation and tracking algorithms. However, rain removal algorithms are typically evaluated on their ability to remove synthetic rain on a small subset of images. Currently, their behavior is unknown on real-world videos when integrated with a typical computer vision pipeline. In this paper, we review the existing rain removal algorithms and propose a new dataset that consists of 22 traffic surveillance sequences under a broad variety of weather conditions that all include either rain or snowfall. We propose a new evaluation protocol that evaluates the rain removal algorithms on their ability to improve the performance of subsequent segmentation, instance segmentation, and feature tracking algorithms under rain and snow. If successful, the de-rained frames of a rain removal algorithm should improve segmentation performance and increase the number of accurately tracked features. The results show that a recent single-frame-based rain removal algorithm increases the segmentation performance by 19.7% on our proposed dataset, but it eventually decreases the feature tracking performance and showed mixed results with recent instance segmentation methods. However, the best video-based rain removal algorithm improves the feature tracking accuracy by 7.72%.Comment: Published in IEEE Transactions on Intelligent Transportation System

    Removal of visual disruption caused by rain using cycle-consistent generative adversarial networks

    Get PDF
    This paper addresses the problem of removing rain disruption from images without blurring scene content, thereby retaining the visual quality of the image. This is particularly important in maintaining the performance of outdoor vision systems, which deteriorates with increasing rain disruption or degradation on the visual quality of the image. In this paper, the Cycle-Consistent Generative Adversarial Network (CycleGAN) is proposed as a more promising rain removal algorithm, as compared to the state-of-the-art Image De-raining Conditional Generative Adversarial Network (ID-CGAN). One of the main advantages of the CycleGAN is its ability to learn the underlying relationship between the rain and rain-free domain without the need of paired domain examples, which is essential for rain removal as it is not possible to obtain the rain-free image under dynamic outdoor conditions. Based on the physical properties and the various types of rain phenomena [10], five broad categories of real rain distortions are proposed, which can be applied to the majority of outdoor rain conditions. For a fair comparison, both the ID-CGAN and CycleGAN were trained on the same set of 700 synthesized rain-and-ground-truth image-pairs. Subsequently, both networks were tested on real rain images, which fall broadly under these five categories. A comparison of the performance between the CycleGAN and the ID-CGAN demonstrated that the CycleGAN is superior in removing real rain distortions

    Unsupervised Single Image Deraining with Self-supervised Constraints

    Full text link
    Most existing single image deraining methods require learning supervised models from a large set of paired synthetic training data, which limits their generality, scalability and practicality in real-world multimedia applications. Besides, due to lack of labeled-supervised constraints, directly applying existing unsupervised frameworks to the image deraining task will suffer from low-quality recovery. Therefore, we propose an Unsupervised Deraining Generative Adversarial Network (UD-GAN) to tackle above problems by introducing self-supervised constraints from the intrinsic statistics of unpaired rainy and clean images. Specifically, we firstly design two collaboratively optimized modules, namely Rain Guidance Module (RGM) and Background Guidance Module (BGM), to take full advantage of rainy image characteristics: The RGM is designed to discriminate real rainy images from fake rainy images which are created based on outputs of the generator with BGM. Simultaneously, the BGM exploits a hierarchical Gaussian-Blur gradient error to ensure background consistency between rainy input and de-rained output. Secondly, a novel luminance-adjusting adversarial loss is integrated into the clean image discriminator considering the built-in luminance difference between real clean images and derained images. Comprehensive experiment results on various benchmarking datasets and different training settings show that UD-GAN outperforms existing image deraining methods in both quantitative and qualitative comparisons.Comment: 10 pages, 8 figure

    Non-locally Enhanced Encoder-Decoder Network for Single Image De-raining

    Full text link
    Single image rain streaks removal has recently witnessed substantial progress due to the development of deep convolutional neural networks. However, existing deep learning based methods either focus on the entrance and exit of the network by decomposing the input image into high and low frequency information and employing residual learning to reduce the mapping range, or focus on the introduction of cascaded learning scheme to decompose the task of rain streaks removal into multi-stages. These methods treat the convolutional neural network as an encapsulated end-to-end mapping module without deepening into the rationality and superiority of neural network design. In this paper, we delve into an effective end-to-end neural network structure for stronger feature expression and spatial correlation learning. Specifically, we propose a non-locally enhanced encoder-decoder network framework, which consists of a pooling indices embedded encoder-decoder network to efficiently learn increasingly abstract feature representation for more accurate rain streaks modeling while perfectly preserving the image detail. The proposed encoder-decoder framework is composed of a series of non-locally enhanced dense blocks that are designed to not only fully exploit hierarchical features from all the convolutional layers but also well capture the long-distance dependencies and structural information. Extensive experiments on synthetic and real datasets demonstrate that the proposed method can effectively remove rain-streaks on rainy image of various densities while well preserving the image details, which achieves significant improvements over the recent state-of-the-art methods.Comment: Accepted to ACM Multimedia 201
    corecore