8,441 research outputs found

    UNION: A Trust Model Distinguishing Intentional and Unintentional Misbehavior in Inter-UAV Communication

    Full text link
    [EN] Ensuring the desired level of security is an important issue in all communicating systems, and it becomes more challenging in wireless environments. Flying Ad Hoc Networks (FANETs) are an emerging type of mobile network that is built using energy-restricted devices. Hence, the communications interface used and that computation complexity are additional factors to consider when designing secure protocols for these networks. In the literature, various solutions have been proposed to ensure secure and reliable internode communications, and these FANET nodes are known as Unmanned Aerial Vehicles (UAVs). In general, these UAVs are often detected as malicious due to an unintentional misbehavior related to the physical features of the UAVs, the communication mediums, or the network interface. In this paper, we propose a new context-aware trust-based solution to distinguish between intentional and unintentional UAV misbehavior. The main goal is to minimize the generated error ratio while meeting the desired security levels. Our proposal simultaneously establishes the inter-UAV trust and estimates the current context in terms of UAV energy, mobility pattern, and enqueued packets, in order to ensure full context awareness in the overall honesty evaluation. In addition, based on computed trust and context metrics, we also propose a new inter-UAV packet delivery strategy. Simulations conducted using NS2.35 evidence the efficiency of our proposal, called UNION., at ensuring high detection ratios > 87% and high accuracy with reduced end-to-end delay, clearly outperforming previous proposals known as RPM, T-CLAIDS, and CATrust.This research is partially supported by the United Arab Emirates University (UAEU) under Grant no. 31T065.Barka, E.; Kerrache, CA.; Lagraa, N.; Lakas, A.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J. (2018). UNION: A Trust Model Distinguishing Intentional and Unintentional Misbehavior in Inter-UAV Communication. Journal of Advanced Transportation. 1-12. https://doi.org/10.1155/2018/7475357S112Ghazzai, H., Ben Ghorbel, M., Kadri, A., Hossain, M. J., & Menouar, H. (2017). Energy-Efficient Management of Unmanned Aerial Vehicles for Underlay Cognitive Radio Systems. IEEE Transactions on Green Communications and Networking, 1(4), 434-443. doi:10.1109/tgcn.2017.2750721Sharma, V., & Kumar, R. (2016). Cooperative frameworks and network models for flying ad hoc networks: a survey. Concurrency and Computation: Practice and Experience, 29(4), e3931. doi:10.1002/cpe.3931Sun, J., Wang, W., Kou, L., Lin, Y., Zhang, L., Da, Q., & Chen, L. (2017). A data authentication scheme for UAV ad hoc network communication. The Journal of Supercomputing, 76(6), 4041-4056. doi:10.1007/s11227-017-2179-3He, D., Chan, S., & Guizani, M. (2017). Drone-Assisted Public Safety Networks: The Security Aspect. IEEE Communications Magazine, 55(8), 218-223. doi:10.1109/mcom.2017.1600799cmSeong-Woo Kim, & Seung-Woo Seo. (2012). Cooperative Unmanned Autonomous Vehicle Control for Spatially Secure Group Communications. IEEE Journal on Selected Areas in Communications, 30(5), 870-882. doi:10.1109/jsac.2012.120604Singh, A., Maheshwari, M., Nikhil, & Kumar, N. (2011). Security and Trust Management in MANET. Communications in Computer and Information Science, 384-387. doi:10.1007/978-3-642-20573-6_67Kerrache, C. A., Calafate, C. T., Cano, J.-C., Lagraa, N., & Manzoni, P. (2016). Trust Management for Vehicular Networks: An Adversary-Oriented Overview. IEEE Access, 4, 9293-9307. doi:10.1109/access.2016.2645452Li, W., & Song, H. (2016). ART: An Attack-Resistant Trust Management Scheme for Securing Vehicular Ad Hoc Networks. IEEE Transactions on Intelligent Transportation Systems, 17(4), 960-969. doi:10.1109/tits.2015.2494017Raghunathan, V., Schurgers, C., Sung Park, & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40-50. doi:10.1109/79.985679Feeney, L. M. (2001). Mobile Networks and Applications, 6(3), 239-249. doi:10.1023/a:1011474616255De Rango, F., Guerriero, F., & Fazio, P. (2012). Link-Stability and Energy Aware Routing Protocol in Distributed Wireless Networks. IEEE Transactions on Parallel and Distributed Systems, 23(4), 713-726. doi:10.1109/tpds.2010.160Hyytia, E., Lassila, P., & Virtamo, J. (2006). Spatial node distribution of the random waypoint mobility model with applications. IEEE Transactions on Mobile Computing, 5(6), 680-694. doi:10.1109/tmc.2006.86Wang, Y., Chen, I.-R., Cho, J.-H., Swami, A., Lu, Y.-C., Lu, C.-T., & Tsai, J. J. P. (2018). CATrust: Context-Aware Trust Management for Service-Oriented Ad Hoc Networks. IEEE Transactions on Services Computing, 11(6), 908-921. doi:10.1109/tsc.2016.2587259Kumar, N., & Chilamkurti, N. (2014). Collaborative trust aware intelligent intrusion detection in VANETs. Computers & Electrical Engineering, 40(6), 1981-1996. doi:10.1016/j.compeleceng.2014.01.00

    A personal networking solution

    Get PDF
    This paper presents an overview of research being conducted on Personal Networking Solutions within the Mobile VCE Personal Distributed Environment Work Area. In particular it attempts to highlight areas of commonality with the MAGNET initiative. These areas include trust of foreign devices and service providers, dynamic real-time service negotiation to permit context-aware service delivery, an automated controller algorithm for wireless ad hoc networks, and routing protocols for ad hoc networking environments. Where possible references are provided to Mobile VCE publications to enable further reading

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table
    corecore