338,552 research outputs found

    The pedagogical challenges to collaborative technologies

    Get PDF
    Collaborative technologies offer a range of new ways of supporting learning by enabling learners to share and exchange both ideas and their own digital products. This paper considers how best to exploit these opportunities from the perspective of learners' needs. New technologies invariably excite a creative explosion of new ideas for ways of doing teaching and learning, although the technologies themselves are rarely designed with teaching and learning in mind. To get the best from them for education we need to start with the requirements of education, in terms of both learners‘ and teachers‘ needs. The argument put forward in this paper is to use what we know about what it takes to learn, and build this into a pedagogical framework with which to challenge digital technologies to deliver a genuinely enhanced learning experience

    Using the Internet to improve university education: Problem-oriented web-based learning and the MUNICS environment

    Get PDF
    Up to this point, university education has largely remained unaffected by the developments of novel approaches to web-based learning. The paper presents a principled approach to the design of problem-oriented, web-based learning at the university level. The principles include providing authentic contexts with multimedia, supporting collaborative knowledge construction, making thinking visible with dynamic visualisation, quick access to content resources via Information and Communication Technologies (ICT), and flexible support by tele-tutoring. These principles are used in the Munich Net-based Learning In Computer Science (MUNICS) learning environment, which is designed to support students of computer science to apply their factual knowledge from the lectures to complex real-world problems. For example, students can model the knowledge management in an educational organisation with a graphical simulation tool. Some more general findings from a formative evaluation study with the MUNICS prototype are reported and discussed. E.g., the students' ignorance of the additional content resources is discussed in the light of the well-known finding of insufficient use of help systems in software applicationsBislang wurden neuere AnsĂ€tze zum web-basierten Lernen in nur geringem Maße zur Verbesserung des UniversitĂ€tsstudiums genutzt. Es werden theoretisch begrĂŒndete Prinzipien fĂŒr die Gestaltung problemorientierter, web-basierter Lernumgebungen an der UniversitĂ€t formuliert. Zu diesen Prinzipien gehören die Nutzung von Multimedia-Technologien fĂŒr die Realisierung authentischer Problemkontexte, die UnterstĂŒtzung der gemeinsamen Wissenskonstruktion, die dynamische Visualisierung, der schnelle Zugang zu weiterfĂŒhrenden Wissensressourcen mit Hilfe von Informations- und Kommunikationstechnologien sowie die flexible UnterstĂŒtzung durch Teletutoring. Diese Prinzipien wurden bei der Gestaltung der MUNICS Lernumgebung umgesetzt. MUNICS soll Studierende der Informatik bei der Wissensanwendung im Kontext komplexer praktischer Problemstellungen unterstĂŒtzen. So können die Studierenden u.a. das Wissensmanagement in einer Bildungsorganisation mit Hilfe eines graphischen Simulationswerkzeugs modellieren. Es werden Ergebnisse einer formativen Evaluationsstudie berichtet und diskutiert. Beispielsweise wird die in der Studie festgestellte Ignoranz der Studierenden gegenĂŒber den weiterfĂŒhrenden Wissensressourcen vor dem Hintergrund des hĂ€ufig berichteten Befunds der unzureichenden Nutzung von Hilfesystemen beleuchte

    Using the Internet to improve university education

    Get PDF
    Up to this point, university education has largely remained unaffected by the developments of novel approaches to web-based learning. The paper presents a principled approach to the design of problem-oriented, web-based learning at the university level. The principles include providing authentic contexts with multimedia, supporting collaborative knowledge construction, making thinking visible with dynamic visualisation, quick access to content resources via information and communication technologies, and flexible support by tele-tutoring. These principles are used in the MUNICS learning environment, which is designed to support students of computer science to apply their factual knowledge from the lectures to complex real-world problems. For example, students may model the knowledge management in an educational organisation with a graphical simulation tool. Some more general findings from a formative evaluation study with the MUNICS prototype are reported and discussed. For example, the students' ignorance of the additional content resources is discussed in the light of the well-known finding of insufficient use of help systems in software applications

    Collaborative practices using computers and the internet in science classrooms.

    Get PDF
    Investigations that allow for students to self-direct their inquiries in science classrooms involve building on existing understanding, problem solving and reasoning. The process of explaining complex problems means that students work with multiple sets of data including online resources and information from the Internet. Outcomes of such activities are often in written form, frequently prepared on the computer, representing a collage of negotiated ideas. This article presents primary science classroom investigations about changes of state and landforms and argues that inscription practices were shaped by the functional and social affordances students imbued with the computer and information from the Internet. Findings from the qualitative study with a year 7 teacher, Clara, and her students illustrate how the Internet provided social and collaborative opportunities for scientific meaning making. The argument is made that access to the computer and information from the Internet can open up and constrain opportunities for social thinking and inscription practices. Talking, thinking and composing were observed to constitute the nature of science inquiries as a collaborative effort of meaning making

    An Investigation of Sixth-grade Students\u27 Conceptualization of Angle and Angle Measure: A Retrospective Analysis of Design Research Study of a Real-world Context

    Get PDF
    A strong foundation in students’ understanding of the multifaceted nature of the angle concept is of paramount significance in understanding trigonometry and other advanced mathematics courses involving angles. Research has shown that sixth-grade students struggle understanding the multifaceted nature of the angle concept (Keiser, 2004). Building on existing work on students’ understanding of angle and angle measure and instructional supports, this study asks: How do sixth-grade students conceptualize angle and angle measure before, during, and after learning through a geometry unit of instruction set in a miniature golf context? What instructional supports contribute to sixth-grade students’ conceptualization of angle and angle measure in such a context? I conducted a retrospective analysis of existing data generated using design-based research methodology and guided by Realistic Mathematics Education (RME) theory. Using Cobb and Yackel’s (1996) Emergent Perspective as an interpretive framework, I analyzed transcripts of video and audio recordings from nine days of lessons in a collaborative teaching experiment (CTE), focusing on two pairs of students in sixth-grade mathematics classes. I also analyzed transcripts of pre-interviews before instruction, midway interviews during instruction, and post-interviews after instruction with each student in the two pairs. To answer research question one, I developed codes from data guided by the existing literature. For research question two, I used Anghileri’s (2006) levels of supports framework. Overall, the findings revealed that sixth-grade students conceptualized an angle as a static geometric figure defined by two rays meeting at a common point, and conceptualized angle measure through their body turns. In addition, Anghileri’s three levels of supports, such as the use of structured tasks, teacher’s use of probing questions, generation of conceptual discourse were evident in contributing to students’ conceptualization of angle and angle measure during the miniature golf geometry unit of instruction. The findings of this study have implications for the school mathematics curriculum, and how to teach and to prepare teachers to teach angle and angle measure. This study emphasizes the need to redefine the angle concept in the curriculum documents, the need to increase activities involving body turns and the use of Anghileri’s (2006) levels of supports in the teaching and learning of angle and angle measure in a real-world context. Further research is needed to identify instructional supports, in particular activities that can support students’ conceptualization of slopes and turns as angles in a real-world context
    • 

    corecore