40,500 research outputs found

    Probabilistic Label Relation Graphs with Ising Models

    Full text link
    We consider classification problems in which the label space has structure. A common example is hierarchical label spaces, corresponding to the case where one label subsumes another (e.g., animal subsumes dog). But labels can also be mutually exclusive (e.g., dog vs cat) or unrelated (e.g., furry, carnivore). To jointly model hierarchy and exclusion relations, the notion of a HEX (hierarchy and exclusion) graph was introduced in [7]. This combined a conditional random field (CRF) with a deep neural network (DNN), resulting in state of the art results when applied to visual object classification problems where the training labels were drawn from different levels of the ImageNet hierarchy (e.g., an image might be labeled with the basic level category "dog", rather than the more specific label "husky"). In this paper, we extend the HEX model to allow for soft or probabilistic relations between labels, which is useful when there is uncertainty about the relationship between two labels (e.g., an antelope is "sort of" furry, but not to the same degree as a grizzly bear). We call our new model pHEX, for probabilistic HEX. We show that the pHEX graph can be converted to an Ising model, which allows us to use existing off-the-shelf inference methods (in contrast to the HEX method, which needed specialized inference algorithms). Experimental results show significant improvements in a number of large-scale visual object classification tasks, outperforming the previous HEX model.Comment: International Conference on Computer Vision (2015

    ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans

    Full text link
    We introduce ScanComplete, a novel data-driven approach for taking an incomplete 3D scan of a scene as input and predicting a complete 3D model along with per-voxel semantic labels. The key contribution of our method is its ability to handle large scenes with varying spatial extent, managing the cubic growth in data size as scene size increases. To this end, we devise a fully-convolutional generative 3D CNN model whose filter kernels are invariant to the overall scene size. The model can be trained on scene subvolumes but deployed on arbitrarily large scenes at test time. In addition, we propose a coarse-to-fine inference strategy in order to produce high-resolution output while also leveraging large input context sizes. In an extensive series of experiments, we carefully evaluate different model design choices, considering both deterministic and probabilistic models for completion and semantic inference. Our results show that we outperform other methods not only in the size of the environments handled and processing efficiency, but also with regard to completion quality and semantic segmentation performance by a significant margin.Comment: Video: https://youtu.be/5s5s8iH0NF

    GRASS: Generative Recursive Autoencoders for Shape Structures

    Full text link
    We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.Comment: Corresponding author: Kai Xu ([email protected]

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Predictive coding: A Possible Explanation of Filling-in at the blind spot

    Full text link
    Filling-in at the blind-spot is a perceptual phenomenon in which the visual system fills the informational void, which arises due to the absence of retinal input corresponding to the optic disc, with surrounding visual attributes. Though there are enough evidence to conclude that some kind of neural computation is involved in filling-in at the blind spot especially in the early visual cortex, the knowledge of the actual computational mechanism is far from complete. We have investigated the bar experiments and the associated filling-in phenomenon in the light of the hierarchical predictive coding framework, where the blind-spot was represented by the absence of early feed-forward connection. We recorded the responses of predictive estimator neurons at the blind-spot region in the V1 area of our three level (LGN-V1-V2) model network. These responses are in agreement with the results of earlier physiological studies and using the generative model we also showed that these response profiles indeed represent the filling-in completion. These demonstrate that predictive coding framework could account for the filling-in phenomena observed in several psychophysical and physiological experiments involving bar stimuli. These results suggest that the filling-in could naturally arise from the computational principle of hierarchical predictive coding (HPC) of natural images.Comment: 23 pages, 9 figure
    corecore