3,116 research outputs found

    Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge Graph Embeddings

    Full text link
    We study a symmetric collaborative dialogue setting in which two agents, each with private knowledge, must strategically communicate to achieve a common goal. The open-ended dialogue state in this setting poses new challenges for existing dialogue systems. We collected a dataset of 11K human-human dialogues, which exhibits interesting lexical, semantic, and strategic elements. To model both structured knowledge and unstructured language, we propose a neural model with dynamic knowledge graph embeddings that evolve as the dialogue progresses. Automatic and human evaluations show that our model is both more effective at achieving the goal and more human-like than baseline neural and rule-based models.Comment: ACL 201

    edge2vec: Representation learning using edge semantics for biomedical knowledge discovery

    Full text link
    Representation learning provides new and powerful graph analytical approaches and tools for the highly valued data science challenge of mining knowledge graphs. Since previous graph analytical methods have mostly focused on homogeneous graphs, an important current challenge is extending this methodology for richly heterogeneous graphs and knowledge domains. The biomedical sciences are such a domain, reflecting the complexity of biology, with entities such as genes, proteins, drugs, diseases, and phenotypes, and relationships such as gene co-expression, biochemical regulation, and biomolecular inhibition or activation. Therefore, the semantics of edges and nodes are critical for representation learning and knowledge discovery in real world biomedical problems. In this paper, we propose the edge2vec model, which represents graphs considering edge semantics. An edge-type transition matrix is trained by an Expectation-Maximization approach, and a stochastic gradient descent model is employed to learn node embedding on a heterogeneous graph via the trained transition matrix. edge2vec is validated on three biomedical domain tasks: biomedical entity classification, compound-gene bioactivity prediction, and biomedical information retrieval. Results show that by considering edge-types into node embedding learning in heterogeneous graphs, \textbf{edge2vec}\ significantly outperforms state-of-the-art models on all three tasks. We propose this method for its added value relative to existing graph analytical methodology, and in the real world context of biomedical knowledge discovery applicability.Comment: 10 page

    Benchmarking Network Embedding Models for Link Prediction: Are We Making Progress?

    Get PDF
    Network embedding methods map a network's nodes to vectors in an embedding space, in such a way that these representations are useful for estimating some notion of similarity or proximity between pairs of nodes in the network. The quality of these node representations is then showcased through results of downstream prediction tasks. Commonly used benchmark tasks such as link prediction, however, present complex evaluation pipelines and an abundance of design choices. This, together with a lack of standardized evaluation setups can obscure the real progress in the field. In this paper, we aim to shed light on the state-of-the-art of network embedding methods for link prediction and show, using a consistent evaluation pipeline, that only thin progress has been made over the last years. The newly conducted benchmark that we present here, including 17 embedding methods, also shows that many approaches are outperformed even by simple heuristics. Finally, we argue that standardized evaluation tools can repair this situation and boost future progress in this field

    Fast Shortest Path Distance Estimation in Large Networks

    Full text link
    We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.Yahoo! Research (internship
    • …
    corecore