9,061 research outputs found

    A decision support system for demand and capacity modelling of an accident and emergency department

    Get PDF
    © 2019 Operational Research Society.Accident and emergency (A&E) departments in England have been struggling against severe capacity constraints. In addition, A&E demands have been increasing year on year. In this study, our aim was to develop a decision support system combining discrete event simulation and comparative forecasting techniques for the better management of the Princess Alexandra Hospital in England. We used the national hospital episodes statistics data-set including period April, 2009 – January, 2013. Two demand conditions are considered: the expected demand condition is based on A&E demands estimated by comparing forecasting methods, and the unexpected demand is based on the closure of a nearby A&E department due to budgeting constraints. We developed a discrete event simulation model to measure a number of key performance metrics. This paper presents a crucial study which will enable service managers and directors of hospitals to foresee their activities in future and form a strategic plan well in advance.Peer reviewe

    Data modelling for emergency response

    Get PDF
    Emergency response is one of the most demanding phases in disaster management. The fire brigade, paramedics, police and municipality are the organisations involved in the first response to the incident. They coordinate their work based on welldefined policies and procedures, but they also need the most complete and up-todate information about the incident, which would allow a reliable decision-making.\ud There is a variety of systems answering the needs of different emergency responders, but they have many drawbacks: the systems are developed for a specific sector; it is difficult to exchange information between systems; the systems offer too much or little information, etc. Several systems have been developed to share information during emergencies but usually they maintain the nformation that is coming from field operations in an unstructured way.\ud This report presents a data model for organisation of dynamic data (operational and situational data) for emergency response. The model is developed within the RGI-239 project ‘Geographical Data Infrastructure for Disaster Management’ (GDI4DM)

    The value of triage during periods of intense COVID-19 demand: simulation modelling study

    Get PDF
    Background: During the COVID-19 pandemic many intensive care units have been overwhelmed by unprecedented levels of demand. Notwithstanding ethical considerations, the prioritisation of patients with better prognoses may support a more effective use of available capacity in maximising aggregate outcomes. This has prompted various proposed triage criteria, although in none of these has an objective assessment been made in terms of impact on number of lives and life-years saved. Design: An open source computer simulation model was constructed for approximating the intensive care admission and discharge dynamics under triage. The model was calibrated from observational data for 9505 patient admissions to UK intensive care units. In order to explore triage efficacy under various conditions, scenario analysis was performed using a range of demand trajectories corresponding to differing non-pharmaceutical interventions.Results: Triaging patients at the point of expressed demand had negligible effect on deaths but reduces life-years lost by up to 8.4% (95% CI: 2.6% to 18.7%). Greater value may be possible through ‘reverse triage’, i.e. promptly discharging any patient not meeting the criteria if admission cannot otherwise be guaranteed for one that does. Under such policy, life-years lost can be reduced by 11.7% (2.8% to 25.8%), which represents 23.0% (5.4% to 50.1%) of what is operationally feasible with no limit on capacity and in absence of improved clinical treatments.Conclusions: The effect of simple triage is limited by a trade-off between reduced deaths within intensive care (due to improved outcomes) and increased deaths resulting from declined admission (due to lower throughput given the longer lengths of stay of survivors). Improvements can be found through reverse triage, at the expense of potentially complex ethical considerations.<br/

    An Optimisation-based Framework for Complex Business Process: Healthcare Application

    Get PDF
    The Irish healthcare system is currently facing major pressures due to rising demand, caused by population growth, ageing and high expectations of service quality. This pressure on the Irish healthcare system creates a need for support from research institutions in dealing with decision areas such as resource allocation and performance measurement. While approaches such as modelling, simulation, multi-criteria decision analysis, performance management, and optimisation can – when applied skilfully – improve healthcare performance, they represent just one part of the solution. Accordingly, to achieve significant and sustainable performance, this research aims to develop a practical, yet effective, optimisation-based framework for managing complex processes in the healthcare domain. Through an extensive review of the literature on the aforementioned solution techniques, limitations of using each technique on its own are identified in order to define a practical integrated approach toward developing the proposed framework. During the framework validation phase, real-time strategies have to be optimised to solve Emergency Department performance issues in a major hospital. Results show a potential of significant reduction in patients average length of stay (i.e. 48% of average patient throughput time) whilst reducing the over-reliance on overstretched nursing resources, that resulted in an increase of staff utilisation between 7% and 10%. Given the high uncertainty in healthcare service demand, using the integrated framework allows decision makers to find optimal staff schedules that improve emergency department performance. The proposed optimum staff schedule reduces the average waiting time of patients by 57% and also contributes to reduce number of patients left without treatment to 8% instead of 17%. The developed framework has been implemented by the hospital partner with a high level of success

    Diagnostic error increases mortality and length of hospital stay in patients presenting through the emergency room

    Get PDF
    Background: Diagnostic errors occur frequently, especially in the emergency room. Estimates about the consequences of diagnostic error vary widely and little is known about the factors predicting error. Our objectives thus was to determine the rate of discrepancy between diagnoses at hospital admission and discharge in patients presenting through the emergency room, the discrepancies’ consequences, and factors predicting them. Methods: Prospective observational clinical study combined with a survey in a University-affiliated tertiary care hospital. Patients’ hospital discharge diagnosis was compared with the diagnosis at hospital admittance through the emergency room and classified as similar or discrepant according to a predefined scheme by two independent expert raters. Generalized linear mixed-effects models were used to estimate the effect of diagnostic discrepancy on mortality and length of hospital stay and to determine whether characteristics of patients, diagnosing physicians, and context predicted diagnostic discrepancy. Results: 755 consecutive patients (322 [42.7%] female; mean age 65.14 years) were included. The discharge diagnosis differed substantially from the admittance diagnosis in 12.3% of cases. Diagnostic discrepancy was associated with a longer hospital stay (mean 10.29 vs. 6.90 days; Cohen’s d 0.47; 95% confidence interval 0.26 to 0.70; P = 0.002) and increased patient mortality (8 (8.60%) vs. 25(3.78%); OR 2.40; 95% CI 1.05 to 5.5 P = 0.038). A factor available at admittance that predicted diagnostic discrepancy was the diagnosing physician’s assessment that the patient presented atypically for the diagnosis assigned (OR 3.04; 95% CI 1.33–6.96; P = 0.009). Conclusions: Diagnostic discrepancies are a relevant healthcare problem in patients admitted through the emergency room because they occur in every ninth patient and are associated with increased in-hospital mortality. Discrepancies are not readily predictable by fixed patient or physician characteristics; attention should focus on context

    A Hybrid Modelling Framework for Real-time Decision-support for Urgent and Emergency Healthcare

    Get PDF
    In healthcare, opportunities to use real-time data to support quick and effective decision-making are expanding rapidly, as data increases in volume, velocity and variety. In parallel, the need for short-term decision-support to improve system resilience is increasingly relevant, with the recent COVID-19 crisis underlining the pressure that our healthcare services are under to deliver safe, effective, quality care in the face of rapidly-shifting parameters. A real-time hybrid model (HM) which combines real-time data, predictions, and simulation, has the potential to support short-term decision-making in healthcare. Considering decision-making as a consequence of situation awareness focuses the HM on what information is needed where, when, how, and by whom with a view toward sustained implementation. However the articulation between real-time decision-support tools and a sociotechnical approach to their development and implementation is currently lacking in the literature. Having identified the need for a conceptual framework to support the development of real-time HMs for short-term decision-support, this research proposed and tested the Integrated Hybrid Analytics Framework (IHAF) through an examination of the stages of a Design Science methodology and insights from the literature examining decision-making in dynamic, sociotechnical systems, data analytics, and simulation. Informed by IHAF, a HM was developed using real-time Emergency Department data, time-series forecasting, and discrete-event simulation. The application started with patient questionnaires to support problem definition and to act as a formative evaluation, and was subsequently evaluated using staff interviews. Evaluation of the application found multiple examples where the objectives of people or sub-systems are not aligned, resulting in inefficiencies and other quality problems, which are characteristic of complex adaptive sociotechnical systems. Synthesis of the literature, the formative evaluation, and the final evaluation found significant themes which can act as antecedents or evaluation criteria for future real-time HM studies in sociotechnical systems, in particular in healthcare. The generic utility of IHAF is emphasised for supporting future applications in similar domains

    A multi-faceted approach to optimising a complex unplanned healthcare system

    Get PDF
    Unscheduled and urgent health care represents the largest area of activity and cost for the UK’s National Health Service (NHS). Like typical complex systems unplanned care has the features of interdependence and having structures at different scales which requires modelling at different levels. The aim of this paper is to discuss the development of a multifaceted approach to study and optimise this complex system. We aim to integrate four different methodologies to gain better understanding of the nature of the system and to develop ways to enhance its performance. These methodologies are: (a) Lean/ Flow theory to look at the process and patients and other flows; (b) Simulation/ System Dynamics to undertake analytical analysis and multi-level modelling; (c) stakeholder consultation and use of system thinking to analyse the system and identify options, barriers and good practice; and (d) visual analytic modelling to facilitate effective decision making in this complex environment. Of particular concern are the boundary issues i.e. how changes in unplanned care will impact on the adjacent facilities and ultimately on the whole Healthcare system
    • …
    corecore