7 research outputs found

    Context Aware Energy Disaggregation Using Adaptive Bidirectional LSTM Models

    No full text

    Deep Learning in Demand Side Management: A Comprehensive Framework for Smart Homes

    Full text link
    The advent of deep learning has elevated machine intelligence to an unprecedented high level. Fundamental concepts, algorithms, and implementations of differentiable programming, including gradient-based measures such as gradient descent and backpropagation, have powered many deep learning algorithms to accomplish millions of tasks in computer vision, signal processing, natural language comprehension, and recommender systems. Demand-side management (DSM) serves as a crucial tactic on the customer side of meters which regulates electricity consumption without hampering the occupant comfort of homeowners. As more residents participate in the energy management program, DSM will further contribute to grid stability protection, economical operation, and carbon emission reduction. However, DSM cannot be implemented effectively without the penetration of smart home technologies that integrate intelligent algorithms into hardware. Resident behaviors being analyzed and comprehended by deep learning algorithms based on sensor-collected human activities data is one typical example of such technology integration. This thesis applies deep learning to DSM and provides a comprehensive framework for smart home management. Firstly, a detailed literature review is conducted on DSM, smart homes, and deep learning. Secondly, the four papers published during the candidate’s Ph.D. career are utilized in lieu of thesis chapters: “A Demand-Side Load Event Detection Algorithm Based on Wide-Deep Neural Networks and Randomized Sparse Backpropagation,” “A Novel High-Performance Deep Learning Framework for Load Recognition: Deep-Shallow Model Based on Fast Backpropagation,” “An Object Surveillance Algorithm Based on Batch-Normalized CNN and Data Augmentation in Smart Home,” “Integrated optimization algorithm: A metaheuristic approach for complicated optimization.” Thirdly, a discussion section is offered to synthesize ideas and key results of the four papers published. Conclusion and directions for future research are provided in the final section of this thesis

    Residential Energy Management for Renewable Energy Systems Incorporating Data-Driven Unravelling of User Behavior

    Get PDF
    The penetration of distributed energy resources (DERs) such as photovoltaic (PV) at the residential level has increased rapidly over the past year. It will inevitably induce a paradigm shift in end-user and operations of local energy markets. The energy community with high integration of DERs initiative allows its users to manage their generation (for prosumers) and consumption more efficiently, resulting in various economic, social, and environmental benefits. Specifically, the local energy communities and their members can legally engage in energy generation, distribution, supply, consumption, storage, and sharing to increase levels of autonomy from the power grid, advance energy efficiency, reduce energy costs, and decrease carbon emissions. Reducing energy consumption costs is difficult for residential energy management without understanding the users' preferences. The advanced measurement and communication technologies provide opportunities for individual consumers/prosumers and local energy communities to adopt a more active role in renewable-rich smart grids. Non-intrusive load monitoring (NILM) monitors the load activities from a single point source, such as a smart meter, based on the assumption that different appliances have different power consumption levels and features. NILM can extract the users' load consumption from the smart meter to support the development of the smart grid for better energy management and demand response (DR). Yet to date, how to design residential energy management, including home energy management systems (HEMS) and community energy management systems (CEMS), with an understanding of user preferences and willingness to participate in energy management, is still far from being fully investigated. This thesis aims to develop methodologies for a resident energy management system for renewable energy systems (RES) incorporating data-driven unravelling of the user's energy consumption behaviour

    Smart Metering System: Developing New Designs to Improve Privacy and Functionality

    Get PDF
    This PhD project aims to develop a novel smart metering system that plays a dual role: Fulfil basic functions (metering, billing, management of demand for energy in grids) and protect households from privacy intrusions whilst enabling them a degree of freedom. The first two chapters of the thesis will introduce the research background and a detailed literature review on state-of-the-art works for protecting smart meter data. Chapter 3 discusses theory foundations for smart meter data analytics, including machine learning, deep learning, and information theory foundations. The rest of the thesis is split into two parts, ‘Privacy’ and ‘Functionality’, respectively. In the ‘Privacy’ part, the overall smart metering system, as well as privacy configurations, are presented. A threat/adversary model is developed at first. Then a multi-channel smart metering system is designed to reduce the privacy risks of the adversary. Each channel of the system is responsible for one functionality by transmitting different granular smart meter data. In addition, the privacy boundary of the smart meter data in the proposed system is also discovered by introducing a data mining algorithm. By employing the algorithm, a three-level privacy boundary is concluded. Furthermore, a differentially private federated learning-based value-added service platform is designed to provide flexible privacy guarantees to consumers and balance the trade-off between privacy loss and service accuracy. In the ‘Functionality’ part, three feeder-level functionalities: load forecasting, solar energy separation, and energy disaggregation are evaluated. These functionalities will increase thepredictability, visibility, and controllability of the distributed network without utilizing household smart meter data. Finally, the thesis will conclude and summarize the overall system and highlight the contributions and novelties of this project

    Data-driven modelling, forecasting and uncertainty analysis of disaggregated demands and wind farm power outputs

    Get PDF
    Correct analysis of modern power supply systems requires to evaluate much wider ranges of uncertainties introduced by the implementation of new technologies on both supply and demand sides. On the supply side, these uncertainties are due to the increased contributions of renewable generation sources (e.g., wind and PV), whose stochastic output variations are difficult to predict and control, as well as due to the significant changes in system operating conditions, coming from the implementation of various control and balancing actions, increased automation and switching functionalities, and frequent network reconfiguration. On the demand side, these uncertainties are due to the installation of new types of loads, featuring strong spatio-temporal variations of demands (e.g., EV charging), as well as due to the deployment of different demand-side management schemes. Modern power supply systems are also characterised by much higher availability of measurements and recordings, coming from a number of recently deployed advanced monitoring, data acquisition and control systems, and providing valuable information on system operating and loading conditions, state and status of network components and details on various system events, transients and disturbances. Although the processing of large amounts of measured data brings its own challenges (e.g., data quality, performance, and incorporation of domain knowledge), these data open new opportunities for a more accurate and comprehensive evaluation of the overall system performance, which, however, require new data-driven analytical approaches and modelling tools. This PhD research is aimed at developing and evaluating novel and improved data-driven methodologies for modelling renewable generation and demand, in general, and for assessing the corresponding uncertainties and forecasting, in particular. The research and methods developed in this thesis use actual field measurements of several onshore and offshore wind farms, as well as measured active and reactive power demands at several low voltage (LV) individual household levels, up to the demands at medium voltage (MV) substation level. The models are specifically built to be implemented for power system analysis and are actually used by a number of researchers and PhD students in Edinburgh and elsewhere (e.g., collaborations with colleagues from Italy and Croatia), which is discussed and illustrated in the thesis through the selected study cases taken from this joint research efforts. After literature review and discussion of basic concepts and definitions, the first part of the thesis presents data-driven analysis, modelling, uncertainty evaluation and forecasting of (predominantly residential) demands and load profiles at LV and MV levels. The analysis includes both aggregation and disaggregation of measured demands, where the latter is considered in the context of identifying demand-manageable loads (e.g., heating). For that purpose, periodical changes in demands, e.g., half-daily, daily, weekly, seasonal and annual, are represented with Fourier/frequency components and correlated with the corresponding exploratory meteorological variables (e.g., temperature, solar irradiance), allowing to select the combination of components maximising the positive or negative correlations as an additional predictor variable. Convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) are then used to represent dependencies among multiple dimensions and to output the estimated disaggregated time series of specific load types (with Bayesian optimisation applied to select appropriate CNN-BiLSTM hyperparameters). In terms of load forecasting, both tree-based and neural network-based models are analysed and compared for the day-ahead and week-ahead forecasting of demands at MV substation level, which are also correlated with meteorological data. Importantly, the presented load forecasting methodologies allow, for the first time, to forecast both total/aggregate demands and corresponding disaggregated demands of specific load types. In terms of the supply side analysis, the thesis presents data-driven evaluation, modelling, uncertainty evaluation and forecasting of wind-based electricity generation systems. The available measurements from both the individual wind turbines (WTs) and the whole wind farms (WFs) are used to formulate simple yet accurate operational models of WTs and WFs. First, available measurements are preprocessed, to remove outliers, as otherwise obtained WT/WF models may be biased, or even inaccurate. A novel simulation-based approach that builds on a procedure recommended in a standard is presented for processing all outliers due to applied averaging window (typically 10 minutes) and WT hysteresis effects (around the cut-in and cut-out wind speeds). Afterwards, the importance of distinguishing between WT-level and WF-level analysis is discussed and a new six-parameter power curve model is introduced for accurate modelling of both cut-in and cut-out regions and for taking into account operating regimes of a WF (WTs in normal/curtailed operation, or outage/fault). The modelling framework in the thesis starts with deterministic models (e.g., CNN-BiLSTM and power curve models) and is then extended to include probabilistic models, building on the Bayesian inference and Copula theory. In that context, the thesis presents a set of innovative data-driven WT and WF probabilistic models, which can accurately model cross-correlations between the WT/WF power output (Pout), wind speed (WS), air density (AD) and wind direction (WD). Vine Copula and Gaussian mixture Copula model (GMCM) are combined, for the first time, to evaluate the uncertainty of Pout values, conditioning on other explanatory variables (which may be either deterministic, or also uncertain). In terms of probabilistic wind energy forecasting, Bayesian CNN-BiLSTM model is used to analyse and efficiently handle high dimensionality of both input meteorological variables (WS, AD and WD) and additional uncertainties due to WF operating regimes. The presented results demonstrate that the developed Vine-GMCM and operational WF model can accurately integrate and effectively correlate all propagated uncertainties, ultimately resulting in much higher confidence levels of the forecasted WF power outputs than in the existing literature
    corecore