1,897 research outputs found

    Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

    Get PDF
    The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay

    How to Choose the Relevant MAC Protocol for Wireless Smart Parking Urban Networks?

    Get PDF
    Parking sensor network is rapidly deploying around the world and is regarded as one of the first implemented urban services in smart cities. To provide the best network performance, the MAC protocol shall be adaptive enough in order to satisfy the traffic intensity and variation of parking sensors. In this paper, we study the heavy-tailed parking and vacant time models from SmartSantander, and then we apply the traffic model in the simulation with four different kinds of MAC protocols, that is, contention-based, schedule-based and two hybrid versions of them. The result shows that the packet interarrival time is no longer heavy-tailed while collecting a group of parking sensors, and then choosing an appropriate MAC protocol highly depends on the network configuration. Also, the information delay is bounded by traffic and MAC parameters which are important criteria while the timely message is required.Comment: The 11th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (2014

    Performance Comparison of Contention- and Schedule-based MAC Protocols in Urban Parking Sensor Networks

    Get PDF
    Network traffic model is a critical problem for urban applications, mainly because of its diversity and node density. As wireless sensor network is highly concerned with the development of smart cities, careful consideration to traffic model helps choose appropriate protocols and adapt network parameters to reach best performances on energy-latency tradeoffs. In this paper, we compare the performance of two off-the-shelf medium access control protocols on two different kinds of traffic models, and then evaluate their application-end information delay and energy consumption while varying traffic parameters and network density. From the simulation results, we highlight some limits induced by network density and occurrence frequency of event-driven applications. When it comes to realtime urban services, a protocol selection shall be taken into account - even dynamically - with a special attention to energy-delay tradeoff. To this end, we provide several insights on parking sensor networks.Comment: ACM International Workshop on Wireless and Mobile Technologies for Smart Cities (WiMobCity) (2014

    RTXP : A Localized Real-Time Mac-Routing Protocol for Wireless Sensor Networks

    Get PDF
    Protocols developed during the last years for Wireless Sensor Networks (WSNs) are mainly focused on energy efficiency and autonomous mechanisms (e.g. self-organization, self-configuration, etc). Nevertheless, with new WSN applications, appear new QoS requirements such as time constraints. Real-time applications require the packets to be delivered before a known time bound which depends on the application requirements. We particularly focus on applications which consist in alarms sent to the sink node. We propose Real-Time X-layer Protocol (RTXP), a real-time communication protocol. To the best of our knowledge, RTXP is the first MAC and routing real-time communication protocol that is not centralized, but instead relies only on local information. The solution is cross-layer (X-layer) because it allows to control the delays due to MAC and Routing layers interactions. RTXP uses a suited hop-count-based Virtual Coordinate System which allows deterministic medium access and forwarder selection. In this paper we describe the protocol mechanisms. We give theoretical bound on the end-to-end delay and the capacity of the protocol. Intensive simulation results confirm the theoretical predictions and allow to compare with a real-time centralized solution. RTXP is also simulated under harsh radio channel, in this case the radio link introduces probabilistic behavior. Nevertheless, we show that RTXP it performs better than a non-deterministic solution. It thus advocates for the usefulness of designing real-time (deterministic) protocols even for highly unreliable networks such as WSNs

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    On the Medium Access Control Protocols Suitable for Wireless Sensor Networks – A Survey

    Get PDF
    A MAC (Medium Access Control) protocol has direct impact on the energy efficiency and traffic characteristics of any Wireless Sensor Network (WSN). Due to the inherent differences in WSN’s requirements and application scenarios, different kinds of MAC protocols have so far been designed especially targeted to WSNs, though the primary mode of communications is wireless like any other wireless network. This is the subject topic of this survey work to analyze various aspects of the MAC protocols proposed for WSNs. To avoid collision and ensure reliability, before any data transmission between neighboring nodes in MAC layer, sensor nodes may need sampling channel and synchronizing. Based on these needs, we categorize the major MAC protocols into three classes, analyze each protocol’s relative advantages and disadvantages, and finally present a comparative summary which could give a snapshot of the state-of-the-art to guide other researchers find appropriate areas to work on. In spite of various existing survey works, we have tried to cover all necessary aspects with the latest advancements considering the major works in this area
    • 

    corecore