3 research outputs found

    An energy optimization with improved QOS approach for adaptive cloud resources

    Get PDF
    In recent times, the utilization of cloud computing VMs is extremely enhanced in our day-to-day life due to the ample utilization of digital applications, network appliances, portable gadgets, and information devices etc. In this cloud computing VMs numerous different schemes can be implemented like multimedia-signal-processing-methods. Thus, efficient performance of these cloud-computing VMs becomes an obligatory constraint, precisely for these multimedia-signal-processing-methods. However, large amount of energy consumption and reduction in efficiency of these cloud-computing VMs are the key issues faced by different cloud computing organizations. Therefore, here, we have introduced a dynamic voltage and frequency scaling (DVFS) based adaptive cloud resource re-configurability (ACRR) technique for cloud computing devices, which efficiently reduces energy consumption, as well as perform operations in very less time. We have demonstrated an efficient resource allocation and utilization technique to optimize by reducing different costs of the model. We have also demonstrated efficient energy optimization techniques by reducing task loads. Our experimental outcomes shows the superiority of our proposed model ACRR in terms of average run time, power consumption and average power required than any other state-of-art techniques

    Contention energy-aware real-time task mapping on NoC based heterogeneous MPSoCs

    Get PDF
    © 2018 IEEE. Network-on-Chip (NoC)-based multiprocessor system-on-chips (MPSoCs) are becoming the de-facto computing platform for computationally intensive real-time applications in the embedded systems due to their high performance, exceptional quality-of-service (QoS) and energy efficiency over superscalar uniprocessor architectures. Energy saving is important in the embedded system because it reduces the operating cost while prolongs lifetime and improves the reliability of the system. In this paper, contention-aware energy efficient static mapping using NoC-based heterogeneous MPSoC for real-time tasks with an individual deadline and precedence constraints is investigated. Unlike other schemes task ordering, mapping, and voltage assignment are performed in an integrated manner to minimize the processing energy while explicitly reduce contention between the communications and communication energy. Furthermore, both dynamic voltage and frequency scaling and dynamic power management are used for energy consumption optimization. The developed contention-aware integrated task mapping and voltage assignment (CITM-VA) static energy management scheme performs tasks ordering using earliest latest finish time first (ELFTF) strategy that assigns priorities to the tasks having shorter latest finish time (LFT) over the tasks with longer LFT. It remaps every task to a processor and/or discrete voltage level that reduces processing energy consumption. Similarly, the communication energy is minimized by assigning discrete voltage levels to the NoC links. Further, total energy efficiency is achieved by putting the processor into a low-power state when feasible. Moreover, this approach resolves the contention between communications that traverse the same link by allocating links to communications with higher priority. The results obtained through extensive simulations of real-world benchmarks demonstrate that CITM-VA approach outperforms state-of-the-art technique and achieves an average 30% total energy improvement. Additionally, it maintains high QoS and robustness for real-time applications
    corecore