10 research outputs found

    Unbiased Learning to Rank with Unbiased Propensity Estimation

    Full text link
    Learning to rank with biased click data is a well-known challenge. A variety of methods has been explored to debias click data for learning to rank such as click models, result interleaving and, more recently, the unbiased learning-to-rank framework based on inverse propensity weighting. Despite their differences, most existing studies separate the estimation of click bias (namely the \textit{propensity model}) from the learning of ranking algorithms. To estimate click propensities, they either conduct online result randomization, which can negatively affect the user experience, or offline parameter estimation, which has special requirements for click data and is optimized for objectives (e.g. click likelihood) that are not directly related to the ranking performance of the system. In this work, we address those problems by unifying the learning of propensity models and ranking models. We find that the problem of estimating a propensity model from click data is a dual problem of unbiased learning to rank. Based on this observation, we propose a Dual Learning Algorithm (DLA) that jointly learns an unbiased ranker and an \textit{unbiased propensity model}. DLA is an automatic unbiased learning-to-rank framework as it directly learns unbiased ranking models from biased click data without any preprocessing. It can adapt to the change of bias distributions and is applicable to online learning. Our empirical experiments with synthetic and real-world data show that the models trained with DLA significantly outperformed the unbiased learning-to-rank algorithms based on result randomization and the models trained with relevance signals extracted by click models

    A Deep Recurrent Survival Model for Unbiased Ranking

    Get PDF
    Position bias is a critical problem in information retrieval when dealing with implicit yet biased user feedback data. Unbiased ranking methods typically rely on causality models and debias the user feedback through inverse propensity weighting. While practical, these methods still suffer from two major problems. First, when infer a user click, the impact of the contextual information, such as documents that have been examined, is often ignored. Second, only the position bias is considered but other issues resulted from user browsing behaviors are overlooked. In this paper, we propose an end-to-end Deep Recurrent Survival Ranking (DRSR), a unified framework to jointly model user's various behaviors, to (i) consider the rich contextual information in the ranking list; and (ii) address the hidden issues underlying user behaviors, i.e., to mine observe pattern in queries without any click (non-click queries), and to model tracking logs which cannot truly reflect the user browsing intents (untrusted observation). Specifically, we adopt a recurrent neural network to model the contextual information and estimates the conditional likelihood of user feedback at each position. We then incorporate survival analysis techniques with the probability chain rule to mathematically recover the unbiased joint probability of one user's various behaviors. DRSR can be easily incorporated with both point-wise and pair-wise learning objectives. The extensive experiments over two large-scale industrial datasets demonstrate the significant performance gains of our model comparing with the state-of-the-arts

    Strongly Constrained Discrete Hashing

    Get PDF
    Learning to hash is a fundamental technique widely used in large-scale image retrieval. Most existing methods for learning to hash address the involved discrete optimization problem by the continuous relaxation of the binary constraint, which usually leads to large quantization errors and consequently suboptimal binary codes. A few discrete hashing methods have emerged recently. However, they either completely ignore some useful constraints (specifically the balance and decorrelation of hash bits) or just turn those constraints into regularizers that would make the optimization easier but less accurate. In this paper, we propose a novel supervised hashing method named Strongly Constrained Discrete Hashing (SCDH) which overcomes such limitations. It can learn the binary codes for all examples in the training set, and meanwhile obtain a hash function for unseen samples with the above mentioned constraints preserved. Although the model of SCDH is fairly sophisticated, we are able to find closed-form solutions to all of its optimization subproblems and thus design an efficient algorithm that converges quickly. In addition, we extend SCDH to a kernelized version SCDH K . Our experiments on three large benchmark datasets have demonstrated that not only can SCDH and SCDH K achieve substantially higher MAP scores than state-of-the-art baselines, but they train much faster than those that are also supervised as well

    InfoRank: Unbiased Learning-to-Rank via Conditional Mutual Information Minimization

    Full text link
    Ranking items regarding individual user interests is a core technique of multiple downstream tasks such as recommender systems. Learning such a personalized ranker typically relies on the implicit feedback from users' past click-through behaviors. However, collected feedback is biased toward previously highly-ranked items and directly learning from it would result in a "rich-get-richer" phenomenon. In this paper, we propose a simple yet sufficient unbiased learning-to-rank paradigm named InfoRank that aims to simultaneously address both position and popularity biases. We begin by consolidating the impacts of those biases into a single observation factor, thereby providing a unified approach to addressing bias-related issues. Subsequently, we minimize the mutual information between the observation estimation and the relevance estimation conditioned on the input features. By doing so, our relevance estimation can be proved to be free of bias. To implement InfoRank, we first incorporate an attention mechanism to capture latent correlations within user-item features, thereby generating estimations of observation and relevance. We then introduce a regularization term, grounded in conditional mutual information, to promote conditional independence between relevance estimation and observation estimation. Experimental evaluations conducted across three extensive recommendation and search datasets reveal that InfoRank learns more precise and unbiased ranking strategies.Comment: WWW 202

    Algorithms in E-recruitment Systems

    Get PDF

    Content-Aware Click Modeling

    No full text
    Click models aim at extracting intrinsic relevance of documents to queries from biased user clicks. One basic modeling assumption made in existing work is to treat such intrinsic relevance as an atomic query-document-specific parameter, which is solely estimated from historical clicks without using any content information about a document or relationship among the clicked/skipped documents under the same query. Due to this overly simplified assumption, existing click models can neither fully explore the information about a document’s relevance quality nor make predictions of relevance for any unseen documents. In this work, we proposed a novel Bayesian Sequential State model for modeling the user click behaviors, where the document content and dependencies among the sequential click events within a query are characterized by a set of descriptive features via a probabilistic graphical model. By applying the posterior regularized Expectation Maximization algorithm for parameter learning, we tailor the model to meet specific ranking-oriented properties, e.g., pairwise click preferences, so as to exploit richer information buried in the user clicks. Experiment results on a large set of real click logs demonstrate the effectiveness of the proposed model compared with several state-of-the-art click models
    corecore