
VU Research Portal

Algorithms in E-recruitment Systems

de Ruijt, Corné Adrianus Maria

2022

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
de Ruijt, C. A. M. (2022). Algorithms in E-recruitment Systems.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 05. Nov. 2022

https://research.vu.nl/en/publications/18287571-9a62-4d56-b2cb-6e25854c2756

Algorithms in E-recruitment Systems

Corné de Ruijt

Copyright © Corné de Ruijt, 2022

Printed by: REPRO VU Print Services | https://repro-vu.business.site
Cover design by: Timo van Veldhoven

The research in this dissertation is supported by a Public-Private
Partnership between the VU Amsterdam and Endouble.

VRIJE UNIVERSITEIT

ALGORITHMS IN E-RECRUITMENT SYSTEMS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor of Philosophy aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. J.J.G. Geurts,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen

op vrijdag 20 mei 2022 om 9.45 uur
in een bijeenkomst van de universiteit,

De Boelelaan 1105

door

Corné Adrianus Maria de Ruijt

geboren te Delft

promotor: prof.dr. S. Bhulai

copromotor: prof.dr. G.M. Koole

promotiecommissie: prof.dr. M.C.M. de Gunst
prof.dr.ir. A.P. de Vries
prof.dr. E. Kanoulas
dr. C.C.S. Liem
dr. S.T. Mol

Aan mijn vader

Acknowledgements

I would hereby like to thank the many people who have, directly or indirectly,
contributed to this dissertation.

First of all, I would like to thank my promotor Sandjai Bhulai. The road to this
dissertation has, like any dissertation, taken many turns. But without your
patience in letting me find my own research edge, and your critical feedback
on my work, this dissertation would not have been possible. I also would
like to thank my co-promotor, Ger Koole, and Bram Gorissen, who was my
co-promotor during the first year of my promotion.

I would also like to share my gratitude to the (former) members of the An-
alytics and Optimization research group at the Vrije Universiteit. A year of
Corona solitude only made me realize how much I appreciate the countless
conversations and the many fun moments we had. Needless to say, I hope
there are many pizza calzones and Alpen trips yet to come.

I also owe my thanks to my former colleagues at Endouble. Here, I would
especially like to mention Leon Willemsens and Jan Peter Tulp, the former
directors of Endouble. I can only say that it is surprising what sending your
kids to lessons of Krav Maga can lead to. I also owe my thanks to Robert
Botman, Richard Jonkhof, Han Rusman, and Dimitrios Psarrou. You not
only guided me through the difficult area between research and practice, but
also your “datanthusiasm” kept me excited about this research, even on days
when I was scheduled for lunch shift 2.

I owe a special thanks to Ton Sluiter. Ton has played an important role in this
research, not only as an ambassador for data-driven recruitment, but also by
building connections between researchers and organizations, from which this
research has profited. I also would like to thank Jasper Hansman, Riecold

i

Veldkamp, and Sander Stuut, for the great conversations we had about re-
cruitment analytics, and their help in gathering and interpreting datasets.

I would like to thank Vladimer Kobayashi. I greatly enjoyed our collaboration,
and already miss your inexhaustible positivity. Also, I would like to thank
Stefan Mol for his support and advice during the course of this work.

Of course, I would not have been able to write this dissertation without my
family. You have always been able to give me the right push when I needed it,
especially when my estimate of “almost done" was somewhat off. I would like
to thank the members of my rock band Source. You’ve always provided the
right type of distraction from my research. It is a cliché, but still, you rock!
Last, I would like to thank the committee members for reading and reviewing
my dissertation.

ii

Contents

1 Introduction 1

2 Patterns in Job Recommender System Literature 7
2.1 Introduction . 8
2.2 Method and preliminaries . 9

2.2.1 Previous surveys . 9
2.2.2 Preliminaries . 11
2.2.3 Method . 11

2.3 Results . 12
2.3.1 Methods in job recommender systems 12
2.3.2 Competitions . 19
2.3.3 Validation . 20
2.3.4 On the temporal and reciprocal nature of job recommen-

dations . 22
2.3.5 Ethical aspects in job recommender systems 23
2.3.6 JRS at scale: notes from LinkedIn 24

2.4 Conclusion . 25

3 A Flexible EM-approach to Estimate Clicks 29
3.1 Introduction . 30
3.2 Related work . 31
3.3 On the relationship between GCM and IO-HMM 33

3.3.1 A brief recap of IO-HMM 33
3.3.2 The generalized cascade model (GCM) and its resem-

blance to IO-HMM . 35
3.4 On the estimation of GCMs using EM for the IO-HMM 38

3.4.1 Notes on the E-step . 38

iii

3.4.2 Notes on the M-step . 40
3.4.3 Vectorized EM . 42

3.5 Modeling click models as GCMs 45
3.5.1 Mapping click models to GCM 45
3.5.2 Explicit mappings . 48

3.6 Conclusion . 51
3.7 Overview of notation . 53

4 Click Model Simulation: A Case Study 55
4.1 Introduction . 56
4.2 Related work . 57
4.3 Methods . 60

4.3.1 Simulating click data with cookie-churn 60
4.3.2 Session clustering . 66
4.3.3 Experimental setup . 72

4.4 Results . 76
4.4.1 Results on base simulation case 76
4.4.2 Results on multiple simulation scenarios 78

4.5 Conclusion and discussion . 79
4.6 Simulation procedure . 82
4.7 Results on multiple simulations 85

5 Predicting Tenure from Unstructured Resumes 87
5.1 Introduction . 88
5.2 Related work . 89
5.3 Methods . 91

5.3.1 Job transitions modeled as a survival model 91
5.3.2 Survival estimation methods 92
5.3.3 Model evaluation . 96

5.4 Data preparation . 98
5.4.1 Engineering of existing features 98
5.4.2 Computing tenure from parsed résumé data 99
5.4.3 Transforming job descriptions to a vector space 101
5.4.4 Summary of the dataset 101

5.5 Results . 102
5.5.1 Overall performance . 102
5.5.2 Performance on sub-datasets 105

5.6 Conclusion and further research 106

6 Predicting Applications on Recruitment Websites 111

iv

6.1 Introduction . 112
6.2 Related work . 113
6.3 Data gathering and preparation 114
6.4 Exploratory data analysis . 115
6.5 Methods . 118

6.5.1 Method selection . 118
6.5.2 Method overview . 119
6.5.3 Method evaluation . 122

6.6 Results . 122
6.7 Conclusion . 124

Samenvatting 153

Summary 157

v

Chapter 1

Introduction

A personal anecdote

A few years back, I was invited to attend a discussion on the future role of
artificial intelligence (AI) in recruitment. The other participants were mostly
recruitment managers, responsible for managing the recruitment process at
their firm, and two “AI experts”, myself included. Many participants already
knew each other from past events, so little time was needed for everyone to
introduce themselves. While waiting for the last participants to arrive, already
some discussions started. One of the subjects was what e-recruitment (elec-
tronic recruitment) system each organization was using, and to what extent
these fulfilled the needs of the recruitment department.

These e-recruitment systems enable job seekers to search and apply online to
vacancies. They typically consist of an Applicant Tracking System (ATS), and
a career website (also called recruitment website, or job portal). In its basic
form, the ATS is a bookkeeping system for recruitment. It keeps track of what
vacancies are available to receive applications, what applicant applied to what
vacancy, and the current stage of the recruitment process each candidate is in.
Examples of these stages include that the résumé and letter of motivation still
need to be checked, or that the candidate has past the first interview. The
ATS is what people from within the organization interact with. For example,
managers of the department looking for new employees, also known as hiring
managers, may use it to create new vacancies and keep track of applicants in

1

existing vacancies. Recruitment managers may use it to track overall metrics
of the recruitment process. On the contrary, the career website is what job
seekers interact with. It allows them to search through vacancies and apply.

Here, there is a distinction between career websites and corporate career web-
sites. While the former may publish vacancies from any organization, corpo-
rate career websites only publish vacancies from the organization itself. The
corporate career website is also where, most often, job seekers can fill in the
application form in order to apply. Given that this research was conducted
in close collaboration with Endouble, a (at the time of writing) large vendor
of corporate career websites in the Netherlands, I was eager to hear these
recruitment managers discuss the pros and cons of e-recruitment systems.

Once all participants had arrived and everyone was introduced, the official
program of the event started. The host of the event asked a number of yes-
or-no questions about applied AI in recruitment, which the participants were
asked to answer by raising their hands. These questions would then be followed
by a more in-depth discussion. The question that struck me the most was
when the recruitment managers were asked whether they were using AI in
their recruitment process at that moment. To my surprise, the majority did
not raise their hand, implying they were not using AI. After a brief discussion,
it became clear that most recruitment managers had interpreted this question
as “Are you currently using a machine learning model to automatically detect
what candidates you should hire?”. The recruitment managers had not noticed
that, only a few moments earlier, they had been using a piece of AI to look
up that new ATS vendor. That is, they had been using a search engine.

Search engines are used so often in daily life, that the impact they have is
perhaps easily forgotten. However, search engines and recommender systems
do have a large influence on how job seekers and recruiters search/advertise
jobs. In many recruitment departments, you are likely to find a recruitment
marketeer who can tell you about the importance of selecting the right key-
words to make a vacancy findable via a search engine (also known as Search
Engine Optimization, or SEO), or how to advertise this vacancy using so-
cial networks such as LinkedIn or Facebook. This recruiter may also tell you
that you should republish a vacancy once in a while on a career website, such
that the vacancy will again appear on top of the Search Engine Result Page
(SERP). Also, he/she may tell you that the look and feel of the corporate
career website influences who enters the applicant pool in the first place [28].
On the contrary, even though automated candidate selection is often hyped
in the media (e.g., [100, 169]), using machine learning to solve the candidate

2

selection problem remains to the adventurous few [212, p. 31].

I point out the importance of search engines here, as it often provides low-
hanging fruit for optimizing the recruitment process. A similar argument can
be made for job recommender systems. An example of such low-hanging fruit,
is that we may change the order of a vacancy search result based on the
number of applications each vacancy has received. Here, we would make use
of the position bias in search engines and recommender systems.

Job seekers are more likely to click on vacancies on top of the SERP, as these
are more likely to be evaluated by job seekers than vacancies at lower positions.
Changing the order of vacancies allows us to promote vacancies with fewer
applications. Such small adjustments may, under certain conditions, lead to a
better spread of applicants over multiple similar vacancies, without so much
reducing the probability of finding a suitable candidate [24]. Changing the
SERP’s order based on metrics such as on applicant counts is relatively easy
to implement in, for example, current document database systems (e.g., [47]).
Predicting how many applications a vacancy will receive will be the subject of
Chapter 6.

What are these conditions under which we can change the order of vacancies?
Obviously, vacancies should still satisfy the filters that a job seeker sets on the
website, such as a location or job type filter. Though, even if vacancies satisfy
these filters, the job seeker might still find one vacancy more relevant than
another. Part of this dissertation will be about how to estimate this relevance.
The relevance is often obscured in observed clicks. Click through rates of two
identical vacancies may be different if one vacancy has been shown at higher
positions in SERPs more often. Estimating relevance in the presence of the
position bias is discussed in Chapter 3. Also, click probabilities may differ,
depending on whether the job seeker has viewed the vacancy before. That the
job seeker has viewed the vacancy before, however, may not be reflected in the
data. Estimating whether different website sessions belong to the same user is
one of the problems considered in Chapter 4.

That is not to say, that the candidate selection problem is not a problem worth
studying. With the cost of turnover being somewhere between once or twice an
employee’s salary [37, pp. 88-89], avoiding a bad hire can lead to considerable
cost savings. However, it is also a difficult problem. Both the features and
the target variable come with considerable fuzziness, making it difficult to
train models and interpret their results (e.g., see Chapter 5). And, as my
anecdotal example illustrates, the novelty of the candidate selection problem
may conceal other opportunities for applying AI in recruitment. Hence, apart

3

from the scientific contributions in this dissertation, I also hope to broaden
the perspective on how AI can be applied in the recruitment process.

About this dissertation

From the late 1990s, job seekers and organizations have increasingly adopted
the internet as a means to find and market jobs. And, following Suvankulov
[216], not without reason. Early studies on the usefulness of e-recruitment
make an impressive list of benefits. These include cost reduction, increased
speed of hiring, higher quality applicants, access to passive job seekers, larger
geographical spread and therefore a larger audience, labor market insights,
and so forth. However, Suvankulov at the same time composed an equally
impressive list of the disadvantages. These include an overwhelming number of
(sometimes unqualified) candidates, privacy problems, lack of personal touch,
discrimination against those without access to the internet, the considerable
time required sifting through applications, and recruitment websites being
(too) difficult to use (the latter also follows from Maurer and Liu [170]).

Although some of these problems remain, there have been many improvements
in information systems and information retrieval since then, including those in
the e-recruitment domain. Also, the arrival of (professional) social networks,
and the possibility to track users, has led to new insights on how job seekers
and employers use the web. These can be used to remove hurdles that job
seekers and recruiters may encounter when using e-recruitment systems.

In this dissertation, we will focus on recommender systems and search engines
that may be encountered in e-recruitment systems. Most often, this is either
a system that recommends vacancies to online job seekers, or the reverse, a
system that recommends candidates to recruiters. Here, we consider the search
engine as a specific case of a recommender system. That is, search engines base
their search result on a search query, which is not required in recommender
systems.

Recommender systems and search engines are concerned with estimating the
utility that each item in the search result will have for the user. Following the
terminology from click models, we will refer to this utility as the relevance of
an item to a user. To estimate this relevance, the search engine/recommender
system only has partial information. For example, it may have information
about what items were clicked on in previous searches. We will consider sev-
eral contexts in this dissertation, in which we estimate the relevance. These

4

contexts are mostly determined by what data is available, and what definition
of relevance is used.

This dissertation is structured as follows. Chapter 2 summarizes some key
developments in job recommender systems from the past decade. We find
that this literature could benefit from a more application-oriented view. Too
often, job recommender systems are treated as just another recommender sys-
tem. These contributions thereby neglect application dependent factors, such
as the temporal and reciprocal nature of job recommendations, or attention
to algorithm fairness. We also provide another taxonomy to classify job rec-
ommender systems, with the aim of branching the large class of hybrid job
recommender systems found in the literature. Chapter 2 is based on de Ruijt
and Bhulai [63].

Although the techniques discussed in Chapters 3 and 4 could be applied in
e-recruitment systems, the chapters focus on a more general problem of esti-
mating relevance from click data, given some bias in the data. These biases
include the position bias and user censoring. In Chapter 3, we wish to esti-
mate how relevant a job seeker will find the vacancy at some position t in a
search result or recommendation. The difficulty of this task lies in that we do
not observe this relevance, but only clicks/ skips (no click). These clicks/skips
may not only reflect the relevancy, but may also depend on how job seekers
search through vacancies. The literature suggests many models and estimation
methods to estimate relevance in the presence of certain click biases. However,
we find that many of these models can be estimated in a uniform way. To do
so, we make use of the Expectation-Maximization algorithm on an Input/Out-
put Hidden Markov Model. The method has been implemented in a python
package called gecasmo [61]. Chapter 3 is based on de Ruijt and Bhulai [62].

Chapter 4 contains two contributions. First, we present a simulation model
that can be used to simulate traffic on a (job) search engine or recommender
system. Apart from simulating traffic, the simulation model also includes
the option to censor which job seeker produced which session. Second, we
apply the simulation model to the task of user clustering. That is, the task of
identifying which internet session originated from which user. This question is
present on corporate career websites, where there is typically no log-in. Hence,
sessions from one user may only be uncovered using clustering techniques, or
by using internet cookies. The result suggest that the censoring effect from
cookies is relatively small. Therefore, most web statistics based on cookies are
quite accurate, even if some censoring occurs. For clustering, we compared
several variations of the (H)DBSCAN* algorithm to clusters users, without or

5

by making limited use of cookie data. However, the results from using cookies
to identify users vastly outperformed these clustering methods. Chapter 4 is
based on de Ruijt and Bhulai [59, 58].

In Chapter 5, we consider the problem of matching job seekers and jobs, using
their textual descriptions (the résumé and the vacancy). However, instead of
using their semantic overlap to evaluate the quality of the match, we try to es-
timate how long the candidate will remain in the job described by the vacancy.
To do so, we make use of the job durations that job seekers often indicate in
the job history section of their résumé. We will refer to these job durations
as job tenures. Although we do find that including time-related variables may
improve matching job seekers to vacancies, the prediction problem is difficult.
Job seekers indicate their previous job tenures at different levels of precision,
and may use different definitions of a job. These factors may explain why
more complex survival estimation methods, such as a random survival forest,
performed only marginally better than simpler models such as a Kaplan-Meier
estimate on this task. Chapter 5 is based on de Ruijt and Bhulai [64].

Chapter 6 compares various commonly used machine learning methods at the
task of estimating the weekly number of applications per vacancy on a corpo-
rate career website. The predictions are mainly aimed at identifying vacancies
that could have an applicant excess/shortage in the future. But also, they can
be used to identify decision variables that may be used to influence job seeker
behavior. Chapter 6 is based on de Ruijt et al. [65, 66].

Publications not contained in this dissertation
Anne Jonker, Corné de Ruijt, and Jornt de Gruijl. Bag & tag’em - A new
Dutch stemmer. In Proceedings of the 12th Language Resources and Evaluation
Conference, pages 3868–3876, 2020.

6

Chapter 2

Patterns in Job
Recommender System
Literature

This chapter provides a review of the job recommender system (JRS) literature
published in the past decade (2011-2021). Compared to previous literature re-
views, we put more emphasis on contributions that incorporate the temporal
and reciprocal nature of job recommendations. Previous studies on JRS sug-
gest that taking such views into account in the design of the JRS can lead to
improved model performance. Also, it may lead to a more uniform distribu-
tion of candidates over a set of similar jobs. We also consider the literature
from the perspective of algorithm fairness. Here we find that this is rarely dis-
cussed in the literature, and if it is discussed, many authors wrongly assume
that removing the discriminatory feature would be sufficient. With respect
to the type of models used in JRS, authors frequently label their method as
‘hybrid’. Unfortunately, they thereby obscure what these methods entail. Us-
ing existing recommender taxonomies, we split this large class of hybrids into
subcategories that are easier to analyse. We further find that data availability,
and in particular the availability of click data, has a large impact on the choice
of method and validation. Last, although the generalizability of JRS across
different datasets is infrequently considered, results suggest that error scores
may vary across these datasets.

7

2.1 Introduction

From the start of the commercialization of the internet in the late 1980s, the
question was raised of how this technology could be leveraged in employee
recruitment. Even before the start of the world wide web, Vega [226] already
proposed a system to match job seekers and jobs, that could “be consulted by
Minitel, using telephone number 3615 and selecting the LM/EMPLOI service”.
In other words, the service allowed job seekers to send text messages in the
form of search queries or their digital résumé, over the telephone line, using a
computer terminal called Minitel. The service would then compare the words
in the query/résumé to a knowledge base that used a fixed job taxonomy to
return a set of potentially interesting vacancies for the job seeker.

Although more than 30 years have passed since this early contribution, the
usage of a fixed job taxonomy to extract information from a résumé including
“branch of industry” (industry) and “qualification” (skill) using “(a) dictionary
specialized in the universe of employment”, seems vaguely similar to LinkedIn’s
query processing method [146], that can be queried using your mobile phone.
Of course, this is a very simplified view on reality. Vega’s 200 simultaneous
Minitel connections could not have served the currently close to 750 million
LinkedIn users worldwide [154]. Nonetheless, the problem of recommending
the right job to job seekers remains as pressing as it was more than 30 years
ago.

In this chapter, we will provide an overview of the literature on job recom-
mender systems (JRS) from the past decade (2011-2021). We will consider the
different methods used in these systems, and consider these from a reciprocal,
temporal, and ethical perspective. Also, we will consider the influence of data
availability on the choice of method and validation. Furthermore, we put extra
emphasis on branching the large class of hybrid recommender systems used in
this application domain.

Our results suggest that JRS could benefit from a more application-oriented
view. The reciprocal and temporal nature of JRS are infrequently discussed
in the literature, while contributions that do consider these show considerable
benefits. Fairness is also rarely considered in job recommender systems. If
it is considered, authors too often wrongly conclude that removing discrim-
inatory features from the data is sufficient. Recent scientific attention on
fairness, including in candidate search engines, has introduced various metrics
and algorithms to improve fairness. These could be used in the job recom-
mender domain as well. In accordance with recommender system literature,

8

deep language models have been more frequently applied in the domain of
job recommender systems as well. However, what remains unknown is how
well results on JRS generalize across different datasets. The only study that
considers this question shows that error metrics my vary greatly over these
datasets.

This chapter has the following structure. Section 2.2 discusses some earlier
literature surveys. It also discusses the method used to obtain and select lit-
erature, and provides a brief discussion on some datasets and terminology we
will frequently mention in this chapter. Section 2.3 discusses our findings, in
which Section 2.3.1 classifies the job literature into the familiar recommender
system taxonomy, while at the same time branching the large class of hybrid
contributions. The remainder of Section 2.3 considers auxiliary topics such as
the influence of data science competitions (Section 2.3.2), validation of JRS
(Section 2.3.3), JRS taking a temporal and/or reciprocal view (Section 2.3.4),
ethical considerations in JRS (Section 2.3.5), and considers contributions dis-
cussing job search and recommendation at LinkedIn (Section 2.3.6). Last,
Section 2.4 draws a conclusion and discusses directions for further research.

2.2 Method and preliminaries

2.2.1 Previous surveys
In recent surveys on applications of recommender systems, job recommender
systems, and recommender systems in e-recruitment, are often not included.
In the well-cited review on applications of recommender systems, Lu et al. [159]
do not mention the application area of e-recruitment. The same holds for the
earlier review by Felfernig et al. [81]. Although most papers on neural networks
in job recommender systems were published after 2018, a survey on (deep)
neural networks in recommender systems, including a section on application
areas, also neglects this application [15]. From the HR perspective, job search
and recommendation are also not always mentioned as an application area, as
opposed to candidate selection, while in the end these systems do determine
who will be in the applicant pool in the first place [214].

One possible explanation could be that, from a technical perspective, the
problem of job search and job recommendation is little different from a gen-
eral information retrieval/recommendation task. Job seekers frequently use
general-purpose search engines and online social networks to search for jobs
(e.g., [114, 65, 132]). Also, many job recommender systems we will discuss in

9

this chapter could as well be used in other application areas (and vice versa).
Nonetheless, we will argue that factors such as the large amount of textual
data, the reciprocal and temporal nature of vacancies, and that these systems
deal with personal data, do indicate that a tailored approach is needed. The
sheer volume of JRS contributions also make it clear that this application area
should not be neglected.

Previous surveys on job recommender systems that consider JRS contributions
before 2012 include Al-Otaibi and Ykhlef [7] and Siting et al. [210]. Especially
the latter survey is very limited in scope. More recent is the survey on recom-
mender systems in e-recruitment by Freire and de Castro [84]. Although our
work has some overlap, we especially wish to address some of the limitations
of the work by Freire and de Castro in this chapter.

Even though the work by Freire succeeds in collecting a substantial number of
contributions in the JRS application domain, they seem to fail to classify these
contributions. They thereby obscure the patterns in this literature. For exam-
ple, approximately 20% of the contributions they discuss is labeled as hybrid,
whereas another 33% is labeled as “other”. Although the reader would later find
that the “other" category includes for 25% contributions using (deep) neural
networks, this still leaves a large number of contributions with an unsatisfying
label. As shown by Batmaz et al. [15], there is also a considerable development
within the class of (deep) neural networks applied to recommender systems,
which we also find in job recommender systems. This rich taxonomy of deep
neural networks in JRS is not reflected in their paper.

The classification given by Freire and de Castro is understandable. Many con-
tributions use mixtures of collaborative filtering and content-based techniques.
These are often labeled by the contributions themselves as hybrids. However,
these labels do not provide much insight into what these contributions actually
entail. Furthermore, Freire and de Castro [84] focus solely on methods and
validation, whereas we, among other subjects, will also take into considera-
tion ethical concerns. We will also put emphasis on job recommender systems
which, often successfully, take into account the reciprocal and temporal nature
of job recommendations.

10

2.2.2 Preliminaries
Many contributions use one of the data sources made available through data
science competitions. These datasets are often used for training and validating
JRS. These datasets include the RecSys 2016 and RecSys 2017 competitions
([3], and [4] respectively), both using (different) datasets from the job board
Xing [236]. Another dataset, the CareerBuilder 2012 dataset, originates from
the CareerBuilder Job Recommendation Challenge [122], which was hosted
by CareerBuilder on Kaggle [34, 123]. All three datasets contain data with
respect to candidate profiles, vacancies, and online interaction between the two.
Another resource often used is the Occupation Information Network (O*NET)
[183], an English-based job ontology that is frequently used in knowledge-based
job recommender systems (see Section 2.3.1).

We will use the terms vacancy, job posting, and job somewhat interchangeably
throughout this chapter to represent the item from the classic recommender
system terminology. Likewise, job seekers represent the users. Although, as
in the early paper by Vega [226], job seekers are still often described by their
résumés, some e-recruitment systems consider other representations. E.g., job
seekers can be represented by the social connections they have on professional
social networks. When we speak of résumés, CVs, user profiles, or job seeker
profiles, we assume these are synonyms and may contain additional information
(such as social relations) beyond the self-description. Last, we will sometimes
speak of “textbook” or “off-the-shelf”, by which we mean methods one can find
in popular machine learning/pattern recognition textbooks such as Bishop
[21], Flach [82], or Aggarwal [5] in the case of commonly used recommender
systems.

2.2.3 Method
The following method was used to obtain the set of contributions discussed
in this chapter. We used Google Scholar to search for contributions, pub-
lished in a scientific journal or in conference proceedings. Here, we used the
key phrases job recommender systems, job recommendation, and job match-
ing. Additionally, we replaced “job” by “occupation” in these phrases. Also,
a forward and backward search was applied. After reviewing, the titles and
abstracts included 192 contributions.

Next, contributions on career trajectory recommendation were omitted. That
is, recommender systems that only recommend a job type (such as “data scien-
tist”), but not a specific occupation at a given organization at a specific time.

11

Table 2.1: Contributions per year per JRS category

Method
Ensemble hybrid Monolithic hybrid

Year Dataset CBR CF Cascade Feature aug. Switching Weighted MM-SE DNN KB
2011 O [185]
2012 O [128]
2013 O [160] [70] [26, 106] [230]
2014 O [71, 69, 80, 97, 166] [103] [192]

CB12 [96]
2015 O [45] [130, 131]
2016 O [73] [93] [141] [205] [153, 248] [146]

RS16 [6, 157] [57, 107, 174, 184, 231, 235] [247] [193, 143, 254, 35] [156]
2017 O [13] [198, 142] [24] [222] [43, 74, 206, 241] [245, 246]

CB12 [207]
RS17 [149, 227, 239, 204] [94] [144, 20] [161]

2018 O [115, 224] [165, 56, 118, 237] [196, 252] [199]
CB12 [8]
RS16 [44]

2019 O [135] [163, 18, 139, 180, 240] [99, 168, 208, 201]
2020 O [92, 48] [19, 117, 197]

CB12 [177]
CB12, RS17, O [136]

Dataset abbreviations: Career Builder 2012 (CB12), RecSys 2016 (RS16), RecSys 2017 (RS17). ‘O’ implies
another dataset was used in these papers.

Also papers on employee selection, recommender systems specifically for free-
lancers, and candidate recommender systems (i.e., recommending candidates
for given vacancies) were filtered out. We further removed contributions with-
out (some form of) empirical validation of their recommender system. The
resulting set contained 87 contributions, which we will discuss in this chapter.

2.3 Results

2.3.1 Methods in job recommender systems
As discussed in Section 2.2.1, although the work by Freire and de Castro
[84] is substantial, our critique lies in how they classify the different job
recommender systems. As is common in the literature, these are split into
Content-Based Recommender Systems (CBR), Collaborative Filtering (CF),
Knowledge-based Recommender Systems (KB), and Hybrid Recommender
Systems (HRS). However, given that so many contributions are hybrid, we
will further make a distinction between monolithic and ensemble hybrid rec-
ommender systems [5, p. 200]. Also, we will split the class of ensemble hybrids,
using the classification introduced by Burke [30]. Beyond monolithic and en-
semble hybrids, Aggarwal [5] also mention a mixed design. However, we did
not find such mixed hybrids in the JRS literature. Therefore, this design is
excluded.

12

Content-based

Content-based recommender systems (CBRs) in the context of JRSs are mod-
els that, to construct a recommendation, only use a semantic similarity mea-
sure between the user profile and the set of available vacancies. In other words,
the semantic similarity is used as a proxy for estimating the relevance of each
vacancy to the job seeker. In CBRs, one creates a vector representation of the
vacancy and user profile in an unsupervised way. I.e., the dimensions of these
representations may not have an intuitive interpretation. Many authors use
Bag of Words (BoW) with TF-IDF weighting [177, 128, 48, 73, 45], though
also Latent Dirichlet Allocation is used [13], and the more recent word2vec
[92, 224, 115]. Interestingly, CBR contributions have been relatively stable in
the past 10 years, but also, they were not part of the top contributions during
the 2016 and 2017 RecSys competitions (see Table 2.1).

Perhaps the main challenge in content-based JRS is that, in the words of
Schmitt et al. [205], “Job seekers and recruiters do not [always] speak the same
language”. I.e., job seekers and recruiters may use a different terminology
to describe jobs, knowledge, or skills. As a result, two entities having the
same meaning may end up with different vector representations, depending on
whether they are described by the recruiter or by the job seeker. Unfortunately,
this discrepancy is often neglected in content-based JRS.

Collaborative filtering

In collaborative filtering (CF), recommendations are based solely on behavioral
data, typically stored in a user × items rating matrix. In the e-recruitment
setting, like in the e-commerce setting, this matrix is usually filled with click
behavior. For example, an element in the rating matrix may equal 1 if the
job seeker (row) has clicked on a vacancy (column), and 0 otherwise. Though,
in case such interaction data is missing, also the sequence of previous job
occupations can be used to fill the rating matrix (e.g., [142]). The latter case
does require jobs to be categorized, such that they can serve as discrete items
in the rating matrix. For simplicity, we will refer to the entries in the rating
matrix as ratings, irrespective of the exact type of behavioral feedback.

The literature commonly distinguishes between two types of CFs: memory-
based CF and model-based CF [5]. In memory-based CF, recommendations
are created using a K-nearest neighbor (KNN) type of approach. That is, for
some user u, one tries to find either K users similar to u (user-based CF), or
K items similar to the items u has already ranked (item-based CF). Here, the

13

similarity is always based on the entries of the rating matrix. Contributions us-
ing textbook CF methods include Lee et al. [142], Reusens et al. [198], Ahmed
et al. [6], and [156], where the latter two applied it to the RecSys 2016 dataset.
Lacic et al. [136] compare several auto-encoders to encode user interactions,
based on which similar users are determined.

Model-based CF tries to fill the missing values in the rating matrix using
regression-based models, based solely on the rating matrix. However, likely due
to the large amount of textual data, that can ideally function as features in such
regression models, we are not aware of any studies using model-based CF in job
recommender systems. On the other hand, although we classified regression
models using textual data as hybrid, these models have a strong CF flavor.
Even though textual features are used, their weights in the regression model
are determined by behavioral feedback. Hence, even though these hybrids are
not solely based on the rating matrix, still the resulting recommendation is
largely determined by what vacancies similar job seekers have interacted with.
Only the definition of ‘similar’ has changed, as it now partly includes features
based on content.

Hybrids

As discussed earlier, hybrid recommender systems combine several models into
one recommender system. Our aim here is to split this group into smaller,
more similar methods. To do so, we follow the approach by Aggarwal [5, pp.
199-204], who split the hybrid recommender systems into those having a mono-
lithic, or ensemble design. A monolithic design refers to hybrid recommender
systems in which it is not possible to extract one component of the hybrid,
and build recommendations based on this component independent of the other
components in the hybrid, without altering the algorithm. On the contrary,
ensemble methods do allow splitting the hybrid recommender system into at
least two components that can (independently) be used for creating recom-
mendations. I.e., the ensemble may consist of some models that by themselves
may be monolithic.

14

Monolithic designs. In the class of monolithic designs, we again consider
two classes. We will refer to the first class as model-based methods on shallow
embeddings (MM-SE). These approaches commonly use off-the-shelf machine
learning methods such as support vector machines [192], Naive Bayes [185],
or Gradient Boosting [241, 237]. What unifies these contributions, is that the
textual data is mapped to a vector space using linear or small order trans-
formations. Although we will leave the definition of shallow or small order
somewhat vague on purpose, these embeddings do have in common that this
order is explicit in the method, whereas in deep embeddings this could be arbi-
trarily large. These shallow embeddings include TF-IDF-weighted document
representations [237], representations based on a predefined job classification
[241, 185], doc2vec [165], and a probabilistic stacked denoising auto-encoder
[43].

Also graphical models are included in the MM-SE class of monolithic hybrids.
Dave et al. [56] map jobs and skills to two matrices sharing the same latent
space. Although the mapping is trained independently from O*NET, the
resulting vector representations show considerable resemblance to the O*NET
ontology. Jiang et al. [118], extract a large number of features from their
dataset of the vacancies, job seeker profiles, and their interactions. This data is
used to train a graphical model in which clicks are predicted based on estimates
of whether a (job seeker, vacancy) pair is of some latent type z. They also
make use of O*NET and use bin-counting [251, Ch. 5] to obtain numeric
representations of some categorical features. Although the model provides an
explicit click probability, as opposed to only predicting the appropriate ranking
of items, the paper does mainly compare its approach with learning to rank
models, such as AdaRank and RankBoost. From this comparison, the model
is found to be favorable.

Three contributions model the job recommendation problem with a somewhat
different objective function, though, we still label these as MM-SE. These in-
clude Dong et al. [74] and subsequent work [44]. Contrary to the approaches
discussed so far, they consider the problem as a reinforcement learning prob-
lem. Given a successful or failed recommendation, a reward function is up-
dated, taking as input the representation of a job seeker and a vacancy. To
speed up computations, vacancies are represented in a binary tree. Wang et al.
[230] not only consider what job should be recommended, but also when this
recommendation should be made, based on estimations of when a job seeker
will switch jobs.

Apart from shallow embeddings, also deep representations have become com-

15

mon strategies, accounting for approximately 50% of all contributions in 2019
and 2020 (see Table 2.1). Since this class consists of only deep neural net-
works (DNNs), we will also refer to this class by the label DNN. Many studies
follow a similar approach as language models such as BERT [68] or ELMo
[189], and extend on these embeddings by adding additional hierarchical at-
tention networks [180, 196]. Also embeddings based on CNNs are common
[139], or mixtures of the above approaches [163, 18, 19, 117, 240]. Siamese
neural networks have also been used for this purpose [206].

The increasing usage of DNNs in recommender systems is not limited to rec-
ommending jobs, but holds for recommender systems in general [15]. Although
it is too soon to draw firm conclusions, the absence of MM-SE contributions
in the last two years is somewhat striking, giving that these were quite com-
mon in 2017 and 2018. Furthermore, some contributions do benchmark their
proposed DNN with models that we may label as MM-SE. I.e., they compare
their approach with similar approaches on word2vec or BoW document repre-
sentations, and find the deep embeddings to be favorable [196, 180, 252]. Also,
in some DNN contributions, the neural network on top of deep job/user/ses-
sion embeddings is compared to other commonly used machine learning al-
gorithms, such as gradient boosted decision trees, with the latter using the
same job/user/session embedding as the proposed DNN. In such comparisons,
DNNs are also found to outperform other machine learning models [163, 117].

To what extent this argument is completely satisfying remains somewhat un-
known. If we view the architecture on top of initial job/user/session embed-
dings as automated feature engineering, then comparing these models with
models without additional feature engineering is perhaps not completely fair.
Moving away from the application of job recommender systems, DNNs also
have not always been outperforming gradient boosting or ensemble techniques
in recent data science competitions, in which participants put more effort in
feature engineering [113].

Ensemble hybrids. Following Burke [30], we split ensemble hybrids into
four classes. Cascade hybrids refine the recommendation given by another
recommender system. These commonly include (gradient) boosting models
[174, 149, 184, 231, 235, 227, 204], where in particular XGBoost[42] is popular.
All these contributions were competitors in either the 2016 or 2017 RecSys
competitions, with [235] and [227] being the winning contributions to the 2016
and 2017 competitions respectively. The problem has also been addressed from
a learning to rank perspective, using LambdaMART [107]. Besides boosting,

16

also refinements using common CBR or CF methods have been proposed [57,
239, 160]

Gui et al. [93] propose the so-called benefit-cost model, a re-ranking procedure
for recommender systems that takes into account downside in recommender
systems. They validate their approach on multiple recommender system ap-
plications, including that of creating job recommendations. To our knowledge,
this contribution is the only contribution that raises the question of whether
in some scenarios a recommendation should be given at all. Ill-fitted recom-
mendations could hurt the trust job seekers have in the recommender system,
making them decide not to use it [137].

Borisyuk et al. [24] refine an earlier job recommendation by predicting the
number of applications to each vacancy, and pushing less popular vacancies
to the top of the recommendation list. The idea behind this strategy is that,
perhaps contrary to the e-commerce recommender setting, it can be hurtful to
have too many applicants on a single vacancy. Recruiters will have to spend at
least some time on each application to evaluate the fit between the applicant
and the vacancy. Also, the result of this evaluation has to be communicated to
the job seeker. Borisyuk et al. [24] also find that pushing less popular vacancies
does increase the number of applications to those vacancies, hence causing a
better spread of the applicants over the vacancy portfolio. However, this is
conditioned on whether the less popular vacancies are sufficiently relevant.

Similar to cascade hybrids is the feature augmentation class, in which case
the result of the previous recommender system in the sequence is not so much
refined, but simply used as an input for the next model. The somewhat similar
approaches by Diaby et al. [70, 71], Diaby and Viennet [69], and Malherbe et al.
[166], Faliagka et al. [80], Gupta and Garg [97], Guo et al. [94] use such an
approach. All these cases apply off-the-shelf methods on top of a CBR.

In weighted hybrids, the outputs of the separate models are combined using
some (possibly non-linear) combination of the predicted scores. Commonly,
CBR and model-based CF are combined in this way [193, 143, 144, 222, 103,
35, 20]. Others combine a large number of textual and behavioral features
[254, 248, 26]. We consider these approaches ensemble hybrids, and not mono-
lithic hybrids, as some of these features may be used directly for job rec-
ommendation by themselves. However, these methods are often comparable
to methods classified as MM-SE. The output of several off-the-shelf machine
learning methods has also been used for this purpose [153].

A common problem in CF is the cold-start problem. New users/items may not

17

have given/received any behavioral feedback yet, making CF-based recommen-
dations difficult. Although multiple hybrid approaches can be used to resolve
this problem, perhaps the most direct approach is to use switching hybrids. In
JRS, this most often implies that the recommender system uses CF by default.
However, if an item or a user has insufficient data, the recommender system
switches to CBR. Contributions using such approach with off-the-shelf CF and
CBR methods include Zhang and Cheng [247], and Schmitt et al. [205].

Knowledge-based JRS

Although Aggarwal [5] define knowledge-based recommender systems as rec-
ommender systems having the conceptual goal to “Give me recommendations
based on my explicit specifications of the kind of content (attributes) I want”,
we will rather use the definition given by Freire and de Castro [84]. They define
it as “[Recommender systems] which rely on deep knowledge about the product
domain (job) to figure out the best items (job vacancies) to recommend to a
user (candidate)". In job recommender systems, this often implies that both
the job and candidate profiles are mapped to some predefined job ontology
(i.e., the knowledge base), after which the two are matched.

A common strategy to generate job recommendations is then to compute the
similarity between the candidate profile and vacancy in the ontology space
[201, 130, 168, 131, 245, 246, 96, 208, 8, 161]. The overlap can be computed
by, for example, the Jaccard index ([96]). Although the construction of such
ontologies can take considerable effort, they have been used successfully in
practice by for example LinkedIn [146], and Textkernel [219]. Nudging users
to complete their profile by recommending skills from the ontology has also
been shown to be a successful strategy to improve such recommendations [14].
Mapping jobs and candidate profiles to a shared ontology also provides a so-
lution to the discrepancy between how job seekers and recruiters define jobs.

Another advantage of using job ontologies is that this also simplifies the imple-
mentation of keyword-based search engines and simplifies filtering. Gutiérrez
et al. [99] consider such an approach, in which an interactive recommender
system was built on top of the knowledge-based job recommender ELISE [77].
In this system, users are able to filter jobs based on travel distance or the type
of contract. The recommender system also explains why some recommenda-
tion is (not) given, e.g., by indicating that a required skill is not mastered by
the job seeker. Participants in the study indicated that the tool allowed, citing
the authors, “greater autonomy, a better understanding of needed competencies
and potential location-based job mobility”.

18

Reusens et al. [199] compare several CF approaches with a keyword search in
terms of recall and reciprocity, both for job recommendation and candidate
recommendation. With respect to job recommendations, although traditional
CF approaches performed acceptably in terms of recall, they were inferior to
keyword search in terms of reciprocity. The authors did find that using a
‘reversed’ rating matrix for job recommendation (that is, building a rating
matrix on whether recruiters saved job seeker profiles for specific vacancies)
improved reciprocity even beyond keyword search, though with a trade-off in
terms of recall.

2.3.2 Competitions
Competitions have played an important role in the job recommendation lit-
erature. In these competitions, organizations share a dataset, an objective,
and an error measure with respect to this objective. These are often shared
via a competition platform, where data science teams can also enroll to the
competition. In the case of job recommender competitions, the goal for each
team is often to construct a job recommendation for a set of hold-out users.
As already hinted in Table 2.1, to our knowledge, three competitions have
had a considerable impact on the job recommender literature. 1) The 2012
Careerbuilder Kaggle competition [122], 2) the RecSys 2016 competition [3],
and 3) the RecSys 2017 competition [4]. The latter two both used a dataset
from the German job board Xing [236].

Besides being used for contributions to the competitions themselves, the data-
sets are also commonly used after completion of the competition. For example,
to train and validate job recommender systems when no dataset is available.
Given that approximately 32% of all job recommender system contributions
use one of these datasets, they have had a considerable influence on the job
recommender literature.

When considering the type of models proposed to the RecSys 2016 and 2017
competitions, we find that most were cascade or weighted hybrids. Gradient
boosted trees were in particular successful [235, 227]. There is, however, no
free lunch. All contributions show that a considerable time and effort was
spent on constructing useful features to represent job seekers, jobs, and their
interaction.

We will emphasize on two more observations with respect to competitions.
First, the 2012 CareerBuilder dataset contains user interactions. Hence, it
could be used to evaluate a collaborative or hybrid recommender system. How-

19

ever, it is frequently used to evaluate content-based recommender systems (see
Table 2.1). Second, to our knowledge, only Lacic et al. [136] compare their pro-
posed recommender system over multiple datasets: the Careerbuilder dataset,
the 2017 RecSys dataset, and a private dataset originating from the student
job portal Studo Jobs [215]. What is striking, is that the performance of
the different models differs considerably across datasets, with no unanimous
agreement across datasets and across error measures which model should be
preferred. I.e., the results dependent on the dataset. However, the authors do
find that from the set of models they consider, using variational auto-encoders
to embed user sessions gave overall the best performance.

2.3.3 Validation
Validation when lacking job seeker - vacancy interaction data Many
authors state in their introduction that there is a vast amount of online data
available, commonly followed by a reference to the current LinkedIn user count
[154]. Although this may be true in terms of vacancies and job seeker pro-
files, researchers do not always have access to interactions between the two.
Naturally, this also impacts the type of methods and validation that is used.

In case interaction data is lacking, authors propose several strategies to still
be able to evaluate their recommendations. One of these is to use one of
the competition datasets for validation and training. As already discussed in
Section 2.3.2, approximately 32% of all contributions use one of the competi-
tion datasets, but from Table 2.1, we also find that these were used after the
competitions had finished.

Expert validation is also used frequently for validation. During such expert
validation, the quality of recommendations is inquired by a group of ‘experts’.
These experts may be the researchers themselves, HR/recruitment experts, or
sometimes students (e.g., [165]). Although authors rarely provide an argument
for using expert validation, the choice could well be influenced by lacking
interaction data. Approximately half of the contributions that use CBR or KB
use expert validation ([128, 130, 45, 131, 13, 245, 246, 115, 224, 168, 208, 92]).
As opposed to CF, CBR or KB do not (always) require interaction data to
create recommendations.

Another way to obtain behavioral feedback when interaction data is lacking,
is by using the previous N jobs in the job detail section of a résumé to predict
the N+1-th job. This does come with the challenge of properly defining a job.
E.g., some job seekers may consider all the different positions they occupied at

20

one firm as separate jobs, whereas others may call this one job. I.e., this type of
modeling requires clustering of the jobs, such that they are all approximately
on the same level. Another challenge is that many details about the job may
be missing [118], which complicates the job clustering.

Contributions that use the next job to train the model, but use expert valida-
tion for validation, include Diaby et al. [70], Diaby and Viennet [69], Malherbe
et al. [166], Diaby et al. [71], and Lee et al. [141]. Contributions using the next
job for both training and validation are Paparrizos et al. [185], Heap et al.
[103], Domeniconi et al. [73], Lin et al. [153], Shalaby et al. [207], Lee et al.
[142], and Dave et al. [56]. Predicting a job seekers next job is an unary clas-
sification problem. We only observe what jobs someone occupied, not those
he/she rejected or was rejected for. Even though in such cases one could use
different methods of negative sampling, all these contributions consider the
jobs not switched to as negatives.

With respect to the best performing contributions during the RecSys 2016
and 2017 competitions, we find that none of these were CBRs. This may be
because interaction data was given, hence, why not use it? However, also in
other hybrid recommender systems, incorporating behavioral feedback is found
to improve the recommender system, even if one has access to a well-defined
and validated job ontology [146].

Validation with interactions: choices in negative sampling When
interaction data is used in the form of clicks, the classification problem is also
unary. I.e., if a vacancy in some position t in the job recommendation list
was not clicked, we cannot be certain whether the job seeker did not find it
relevant, or whether the vacancy was skipped.

In this case, common strategies for defining negatives include using shown
but skipped items [107, 118, 139, 156, 174, 180, 184, 193, 197, 235, 241,
248, 254, 94], or picking negative samples at random (not per se uniform)
[18, 239, 240, 143, 56]. If the recommender allows for sparse matrices, also all
possible vacancy-user interactions can be used [144, 192, 141, 136, 26, 198, 6,
142, 157, 35, 20, 161, 204]. Less common strategies are replacing the job, but
not the candidate or any further context, at random [252], or using vacancies
of which the vacancy details were shown, but did not lead to an application
[197, 196]. Others incorporate negative sampling into the estimation method
itself [149, 19]. Some datasets include even more user actions besides click-
s/skips, such as the deletion of stored vacancies from a profile [231, 227], or
whether the candidate was hired/rejected [117]. These can also be used to

21

define positive/negative instances.

2.3.4 On the temporal and reciprocal nature of job rec-
ommendations

In Borisyuk et al. [24], the authors note on interaction with vacancies posted
at LinkedIn that “Since users like to apply for new jobs, our [previous] job
recommendation system tends to always show new jobs more often than old
jobs” This relationship is also found by [135]. Furthermore, the winning RecSys
2016 contribution explicitly takes into account the recency of items, something
that contributions with similar methods (i.e., using XGBoost) did not.

Whether the claim by Borisyuk et al. (users like to apply to new jobs) holds
is the question. The relationship could also be reversed: recent vacancies are
shown more on top of the recommendation list, and therefore more likely to
be clicked. Furthermore, given that vacancies with high demand will find a
candidate faster, there might also be a survival bias. Vacancies with longer
lead times are likely to be vacancies with low demand, as those with high de-
mand were already removed from the platform (i.e., as they found a suitable
candidate). Nonetheless, irrespectively of the causal chain, we would argue
that the vacancy lead time should be taken more into account in job recom-
mender systems, whereas we find that in most literature this aspect is currently
neglected.

In one early contribution of job recommender systems [167], the authors rep-
resent the job recommendation problem as a reciprocal recommendation prob-
lem. They state that “Theory shows that a good match between persons and
jobs needs to consider both, the preferences of the recruiter and the preferences
of the candidate”. Although some contributions do take this reciprocal nature
into account, and usually with success (e.g., [24, 199, 139]), most contributions
consider the one-dimensional job seeker perspective, neglecting possible harm
to the employer and/or job portal.

For example, the long tail problem in recommender systems [5, p. 33] also
plays a role in job recommender systems and job search engines (e.g., [65]).
There exists some extreme cases, in which this may lead to receiving over 1500
applications per vacancy, as was the case for jobs at the United Nations office
in New York [25, p. 62]. However, the probability of hiring a candidate seems
to be concave increasing in the size of the applicant pool [24]. I.e., growing
the size of the applicant pool is likely to lead to diminishing returns. In case
there is a large applicant pool for a single vacancy, this not only implies that

22

the recruiter will have to sift through more résumés, but also has to reject
more (possibly also well-suited) candidates. Rejecting many candidates may
damage the employer’s brand. Furthermore, as also shown by Borisyuk et al.
[24], job seekers do apply to less popular, but still relevant vacancies, if these
are pushed to the top of the recommendation list.

2.3.5 Ethical aspects in job recommender systems
In their literature review on applied machine learning in human resource man-
agement, Strohmeier and Piazza [214] state that “Ethical and legal aspects are
not broadly considered in current research, only equality of treatment and pro-
tection of privacy issues are discussed". Furthermore: “A few of the research
contributions address equality of treatment [...], mostly by excluding potential
discriminatory features from mining". Unfortunately, in job recommender lit-
erature, equality of treatment is also rarely considered. When it is considered,
also here authors come to the conclusion that simply excluding the discrimi-
natory feature would be sufficient (e.g., [196]).

Excluding discriminatory features may seem logical from the perspective of
preserving privacy, or when trying to eliminate human bias. But at the same
time, this may actually hurt equality of treatment. To check whether the
algorithm is discriminating against a certain group, one would require these
discriminatory features. Following the argument made by Perez [188, Ch.
3-6], the problem of (gender) inequality is perhaps caused by the fact that
the impact of HR/recruitment policies, and as we argue here, the choice for
implementing a certain job recommender system, are not tested against specific
groups. As a result, the chosen policy is often (in Perez’ argument male-)
biased.

One can easily find examples of how sensible features extracted from a résumé
or vacancy may lead to inequality of treatment, which is also called fairness in
the literature. Trivial examples includes work experience (age-biased), or first
name (gender-biased), but many are also less trivial. These include how the
type of words used in a vacancy text, or online (professional) social activity
may be gender-biased ([17, Ch. 4], and [182, Ch. 6] resp.), or how commuting
time may be related to welfare (especially if the office is located in, say, the
city center of London) [182, Ch. 6]. Hence, these should make us aware that
it is not an option to assume that if a (discriminatory) feature is not observed,
it does not exist.

The recent increased scientific attention on algorithm fairness [12] will hope-

23

fully turn this tide, as online job portals are more likely to come under scrutiny
by algorithm audits. Chen et al. [41] perform such an audit on the candidate
search engines of Monster, Indeed, and CareerBuilder, testing these search en-
gines on gender bias. Although all three search engines are found to not allow
for direct discrimination on inappropriate demographics (e.g., by allowing to
filter on gender), the researchers do find indirect discrimination both in terms
of individual and group fairness. Geyik et al. [88], compare several algorithms
for ensuring group fairness in candidate recommender systems/search engines,
with a focus on measures for equal opportunity and demographic parity, one of
which has been implemented for LinkedIn.

Another ethical concern is the usage of so-called “People Aggregators", in
which researchers or people from industry use a web crawler to obtain a sub-
stantial number of professional or personal profiles. Although this is sometimes
with the user’s consent (e.g., [70, 69, 80]), also in many cases this remains un-
clear. We did not find any work in which user profiles are explicitly anonymized
before processing.

2.3.6 JRS at scale: notes from LinkedIn
Although many job recommender systems have been proposed in the literature,
and the internet holds a considerable number of websites where job seekers can
search for jobs, we do find it relevant to put some emphasis on contributions
published by LinkedIn employees for a number of reasons. Even though many
JRSs have been proposed in the literature, few of these dominate the (global)
recruitment market [101]. Hence, we consider it likely that job seekers’ per-
ception will be biased towards the JRSs that these larger players are using.
Furthermore, although many job seekers also use other well-known general-
purpose search engines/social networks, for which the large-scale argument
also holds, LinkedIn includes algorithms specifically designed for establishing
professional matches. Also, LinkedIn has been quite transparent about the al-
gorithms they use, and their respective performance, and is capable of testing
these algorithms online via their A/B-testing platform XLNT [238].

LinkedIn’s job recommender system is on a high level described in [127], while
its search engine is described in [146]. To facilitate different information needs,
LinkedIn encompasses multiple search indices. These are combined into one
to facilitate federated search [9]. The job search engine itself is composed
of a linear combination of several features, which can be grouped into four
classes. First, a query-document semantic matcher. Second, an estimator
for the searcher’s skill with respect to the set of potential jobs. Third, an

24

estimator for the quality of the document, independent of the query and/or
searcher. And fourth, a collection of miscellaneous features such as textual,
geographical and social features. LinkedIn’s job recommender system consists
of a GLMix model, which includes a large number of profile features from both
the candidate, the job, their interactions, and the cosine similarity between
user and job features in the same job domain [248].

LinkedIn’s recommender system and search engine are, however, under con-
tinuous scrutiny. LinkedIn can change certain parts of its recommender sys-
tem/search engine, and test these adjustments using XLNT. Many contri-
butions published at LinkedIn, suggesting adjustment to the recommender
system/search engine, therefore have an online evaluation (e.g., [24, 230, 88]).

From considering the different algorithms and their validation, a few observa-
tions can be made. Both the recommender system and search engine rely on
the set of skills that users indicate on their profile. The algorithms thereby
benefit from LinkedIn’s policy to nudge users to complete their list of skills
[14], or to provide endorsements to other users. Also, of all individual classes
of features, the estimate of one’s expertise seems to lead to the largest im-
provement in model performance. Given that endorsements from other users
influence this estimate, the recommender system and search engine benefit
from LinkedIn being a social network. Although LinkedIn strives towards per-
sonalized results, the algorithms are required to be scalable to meet latency
requirements [127], which leads to some algorithms being competitive to, but
not outperform, other models [248].

2.4 Conclusion

In this chapter, we have discussed the job recommender system (JRS) litera-
ture from several perspectives. These include the influence of data science com-
petitions, the effect of data availability on the choice of method and validation,
and ethical issues in job recommender systems. Furthermore, we branched the
large class of hybrid recommender systems to obtain a better view on how
these hybrid recommender systems differ. Both this multi-perspective view,
and the new taxonomy of hybrid job recommender systems, have not been
discussed by previous reviews on job recommender systems.

Application-oriented challenges in JRSs were already highlighted in early JRS
contributions. Still, most literature does not take these into account. Contri-
butions that do take different views on the JRS problem, however, do show

25

that such views can have several benefits. These benefits may include im-
proved model performance (temporal perspective), improved distribution of
candidates over a set of homogeneous vacancies (reciprocal perspective), or
ensuring algorithm fairness (ethical perspective). Currently, most attention
goes out to how to represent the substantial amount of textual data from both
candidate profiles and vacancies to create job recommendations. For this prob-
lem, especially deep representations have shown promising results. However,
this focus may also create the illusion that this is the only perspective that is
relevant.

Especially in terms of fairness, such a single perspective can be harmful. Al-
though we are not aware of algorithm audits on job recommender systems, an
audit on the candidate search engines of Indeed, Careerbuilder, and Monster
did show significant results for both individual and group unfairness in terms
of gender inequality. The increased scientific attention towards algorithm fair-
ness, however, does provide algorithms and metrics that can be applied to
measure and ensure algorithm fairness. Hence, there is a research opportunity
to study how these can be applied to JRSs.

Many authors state in their introduction that there is a vast amount of data
available in the form of vacancies and job seeker profiles. However, there is
a clear split in the literature with regards to contributions having also ac-
cess to online interaction data between these two. By online interaction data,
we in particular mean clicks/skips on vacancies in the recommendation list.
Interaction data can resolve the language inconsistency between job seekers
and recruiters, which is especially troublesome in content-based and some
knowledge-based JRSs. In case interaction data is missing, one common resort
is to use one of the available datasets from JRS competitions. These are es-
pecially the CareerBuilder 2012, RecSys 2016, and RecSys 2017 competitions,
which therefore have had a considerable influence on the JRS literature.

Comparing methods on different datasets is rarely done. This is unfortunate,
as the (to our knowledge) only contribution that compares JRSs on different
competition datasets shows that error metrics may differ substantially across
these different datasets. This raises questions with respect to the generaliz-
ability of JRSs, when trained on one dataset.

Two additional questions with respect to competition datasets are why these
datasets are so often used, even outside of the competitions, and why their
(online) interaction data is sometimes not taken into account. Although there
may be many valid reasons, we would hypothesize that it can be difficult
to obtain interaction datasets. Organizations collecting such data may not

26

always be part of research communities. Also, sharing such datasets may
involve complications, both technical and legal, creating an extra hurdle for
these organization to collaborate. Hence, while lacking (interaction) data,
researchers resolve to using the competition datasets. Here, they prefer not
to use the interaction data to create recommendations, to ensure their model
can be generalized to datasets where no interaction data is available.

27

Chapter 3

A Flexible EM-approach to
Estimate Clicks

Given the importance of search engines to find digital information, there has
been much scientific attention on how users interact with search engines, and
how such behavior can be modeled. Many models on user - search engine
interaction, which in the literature are known as click models, come in the
form of Dynamic Bayesian Networks. Although many authors have used the
resemblance between the different click models to derive estimation proce-
dures for these models, in particular in the form of Expectation-Maximization
(EM), still deriving the expressions for EM may require a substantial amount
of work, especially for the E-step. What we propose in this chapter, is that this
derivation is often unnecessary. Many existing click models can, under certain
assumptions, be optimized as they were Input-Output Hidden Markov Models
(IO-HMMs). For these models, the forward-backward equations immediately
provide this E-step. Although this approach does not improve algorithmic
performance, and may even be more memory-intensive, it does simplify the
implementation in, for example, Python. To arrive at this conclusion, we will
present the Generalized Cascade Model (GCM), and show how this model can
be estimated using the IO-HMM’s EM framework. Also, we will provide two
examples of how existing click models can be mapped to GCM. Our GCM ap-
proach to estimate click models has been implemented in the gecasmo Python
package.

29

3.1 Introduction

In the last decade, many models have been proposed to explain and/or predict
web user interaction with search engines [49]. Crucial to many of these so-
called click models, is to explain the position bias. That is, that web users tend
to be more likely to click on items at the top of a Search Engine Result Page
(SERP), irrespectively of whether these items are the most relevant ones in the
SERP. Many of these click models are Probabilistic Graphical Models (PGMs),
in particular in the form of Dynamic Bayesian Networks (DBNs) [178, 49]. The
choice of using DBNs to model user interaction follows from observations in
early eye-tracking studies, which suggested that web users on average evaluate
the items in the (SERP) sequentially in a top-down fashion [120]. But also the
work of Craswell et al. [53] has been influential. This contribution showed that
a sequential click model, the so-called cascade model, outperformed other click
models that tried to explain the position bias. Although many improvements
have been made to the cascade model, these improvements have kept this
sequential view.

As the parameters of more complex click models than the cascade model do
not have a closed-form maximum likelihood estimator per se, estimation is
commonly done via expectation-maximization (EM). To our knowledge, most
authors derived the E-step manually for their proposed click model in a similar
fashion as suggested by [49, Ch. 4]. I.e., the expectation has to be derived ex-
plicitly, which may be different for different models. However, as we will argue
in this chapter, such a derivation is often unnecessary. Under the umbrella of
EM, many click models can be rewritten as if they were Input-Output Hid-
den Markov Models (IO-HMMs) [16]. For IO-HMMs, the solution to the EM
algorithm is equivalent to the one obtained from deriving the EM algorithm
explicitly for each of these click models. I.e., if we can use an IO-HMM for
a click model, the IO-HMM directly provides an explicit expression for the
E-step. It thereby makes a separate derivation of the E-step for each click
model unnecessary.

This chapter contributes to the current click model literature in two ways.
First, we introduce a new click model, which we name the Generalized Cascade
Model (GCM). We show that the EM algorithm of GCM and its corresponding
IO-HMM have the same solution. Furthermore, we show that GCM is a gen-
eralization of many commonly used click models, including the User Browser
Model (UBM) and the Chapelle-Zang Model (CZM). Second, as an example,
we provide explicit mappings from UBM and CZM to GCM, mappings that

30

can be used in the gecasmo package [61] to estimate the parameters of these
models. The package fully utilizes the solution equivalence between GCM and
IO-HMM, and therefore only requires these mappings. I.e., contrary to ex-
isting click model estimation software using EM, gecasmo does not require
programming the E-step or M-step explicitly for each click model.

This chapter is structured as follows. Section 3.2 gives an short overview of the
click model literature and the methods used to estimate click models. Section
3.3 presents the GCM and shows how the EM algorithm of IO-HMMs can be
used to estimate GCMs, and uses some properties of GCMs to simplify this
estimation. Section 3.5 shows that UBM and CZM can be mapped to GCM,
and provides an example of such a mapping for both click models, which can
be used in the gecasmo package. Lastly, Section 3.6 gives a conclusion and
discusses ideas for further research.

3.2 Related work

Probabilistic graphical click models As already discussed, a considerable
number of click models have been proposed in the literature in the form of
Dynamic Bayesian Networks (DBNs) [49], many of which were inspired by the
early work by Craswell et al. [53]. Since the work of Crasswell et al., many
alternative DBNs have been proposed, in particular to cope with the two main
limitations of the cascade model. First, it cannot model more than one click
on a SERP, and second, if no item is clicked, it assumes the web user evaluated
all items.

The two perhaps most well-known alternatives to the cascade model are the
user browser model (UBM) [76], and the Chapelle-Zhang model (CZM) [40],
which we will discuss in more depth in Section 3.5.1. From UBM and CZM,
many alternative click models have been derived [49, Ch. 8]. These include the
partially sequential click model (PSCM), and its generalization, the time-aware
click model (TACM) [228, 158]. Both models can be viewed as generalizations
of UBM, in which the depth-first search assumption is replaced by a locally
unidirectional examination assumption.

Unfortunately, CZM is in the literature more commonly known as ‘the Dy-
namic Bayesian Network’ model, hence, is also abbreviated as DBN. However,
since the model is a strict subset of all DBNs, and to avoid confusion in our
terminology, we deliberately renamed the model to CZM in this chapter. We
do like to stress that the authors of the paper speak correctly of ‘a dynamic

31

Bayesian network’; the name ‘the dynamic Bayesian network’ seems to have
followed from other authors referring to the paper.

Distributed approach to click models More recently, recurrent neural
networks (RNNs) have grown in popularity as alternatives to DBNs [22, 23, 67].
This approach is named by Borisov et al. [22] as the distributed approach to
click modeling. The work of Borisov et al. [22] is in particular interesting,
as it shows that these RNNs are able to outperform both UBM and CZM in
terms of click perplexity, though they come at the cost of increased model
complexity.

The latter may be problematic if one is interested in studying the optimal
order of items in a SERP under a certain objective function, as was done by
Balakrishnan and Kambhampati [11]. Given the large number of parameters
in these RNNs, such analysis would quickly become intractable. Furthermore,
although Borisov et al. [22] attempt to explain the features learned by the RNN
using t-SNE [164], this analysis is post hoc. Hence, when drawing conclusions
based on such analysis, one would be at risk of a narrative fallacy. We therefore
argue that, even though a distributed approach may lead to better predictions,
DBNs are still valuable in explaining web user behavior, and optimizing search
engines accordingly.

Estimation of PGMs Click models that have no closed form maximum
likelihood estimate are commonly estimated using Expectation-Maximization
(EM) [49, Ch. 4]. EM has been implemented for some so-called ‘basic click
models’[49, Ch. 3], which include the earlier mentioned UBM and CZM, in
a number of open source software packages. These include the ClickModels
[51], and PyClick[194] projects.

Even though we focus on a typical textbook implementation of EM (e.g., [21,
pp. 438-439]), other authors also consider alterations to EM, or alternatives
to EM, in the context of click models. Especially when the number of param-
eters in the model grows large, alternatives to the classic EM implementation
become more interesting to consider.

In one of the more complex click models, the Task-Centric Model, Zhang et al.
[250] make some additional independence assumptions between latent vari-
ables in order to be able to use EM. However, the authors claim that these
assumptions have little impact on the likelihood distribution. Subsequently,
they propose alternative updates to speed up convergence. Wang et al. [229]
allow for covariates in the model, while still relying on EM for estimation.

32

They propose a posterior regularized EM algorithm for click models to cope
with noisy clicks and mis-ordered item pairs. Apart from EM, Zhu et al. [253]
propose a click model named the general click model, which is solved using
expectation-propagation. Zhang et al. [249] use a probit Bayesian inference
approach, which can be applied to estimate various click models. Both [253]
and [249] allow for covariates in the model.

3.3 On the relationship between GCM and IO-
HMM

3.3.1 A brief recap of IO-HMM
We start by a brief recap of the Input-Output Hidden Markov Model (IO-
HMM), as introduced by Bengio and Frasconi [16]. We will use P(X) to
denote the set of all parents of some node X in a Dynamic Bayesian Network.

Definition 3.3.1. An Input-Output Hidden Markov Model (IO-HMM) is a
Dynamic Bayesian Network consisting of observed states {xt,yt}t=1,...,T , and
latent states {zt}t=1,...,T . For t > 1 we have: P(zt) = {zt−1,xt}, whereas
P(z1) = {xt}. Furthermore, for all t we have: P(yt) = {xt, zt}, and P(xt) = ∅.
Here xt ∈ RR1 , zt ∈ {1, . . . ,K}, and yt ∈ RR2 ; R1, R2 ∈ N. The transition
probabilities are given by

ϕk′k,t(Ω) := P(zt = k|zt−1 = k
′
;xt,Ω), (3.1)

whereas the probability of being in state k at time t given x1:t is given by

ζk,t(Ω) = P(zt = k|x1:t,Ω), (3.2)

with xt′ :t = (xt′ , . . . ,xt), t
′
< t, and Ω = {ϑ1, . . . , ϑP }, ϑp ∈ (0, 1), being

a set of parameters. The emission probability for yt, given current state zt
and covariate vector xt, is given by some density function fy(yt|zt;xt,Ω). A
graphic representation of the IO-HMM is given by Figure 3.1.

Now, let us consider IO-HMM under the lens of expectation-maximization
(EM). Let i ∈ {1, . . . , n} be the index of some realization of {xt,yt, zt}t=1,...,T .
For brevity, we write z

(i)

t′ :t
= (z

(i)

t′
, . . . , z

(i)
t), t

′
< t (idem for y

(i)

t′ :t
and x

(i)

t′ :t
),

and Z = (z
(1)
1:T , . . . , z

(n)
1:T) (idem for Y and X). We are interested in maximizing

33

z1

x1

y1

z2

x2

y2

zT

xT

yT

Figure 3.1: IO-HMM

the likelihood function

L(Ω;X,Y) = P(Y|X,Ω)

=
∑
Z

P(Y,Z|X,Ω), (3.3)

with respect to Ω. Since it is usually not possible to maximize this function
directly, EM rather tries to maximize

Q(Ω; Ω̂) = EZ

[
lc(Ω;Z,Y,X)|Y,X, Ω̂

]
, (3.4)

with respect to Ω, keeping some current estimates Ω̂ constant. Here
lc(Ω;Z,Y,X) is the complete data log-likelihood

lc(Ω;Z,Y,X) =

n∑
i=1

logP(y
(i)
1:T , z

(i)
1:T |x

(i)
1:T ; Ω). (3.5)

Once some (possibly local) optimum Ω∗ has been found, the current estimates
are updated: Ω̂← Ω∗. This process continues until convergence.

In the case of IO-HMM, Q(Ω; Ω̂) can be written as

Q(Ω; Ω̂) =

n∑
i=1

T∑
t=1

K∑
k=1

(
ζ̂

(i)
k,t log fy(y

(i)
t |z

(i)
t ,x

(i)
t ; Ω)+

K∑
k′=1

ĥ
(i)

k′k,t
logϕ

(i)

k′k,t
(Ω)

 ,

(3.6)

34

with
ĥk′k,t = E

[
a

(i)
k,ta

(i)

k′ ,t−1
|x(i)

1:T ,y
(i)
1:T , Ω̂

]
, (3.7)

a
(i)
k,t =

{
1 if z(i)

t = k
0 otherwise

, (3.8)

and ζ̂k,t, being defined as in (3.2), but conditional on current estimates Ω̂.

3.3.2 The generalized cascade model (GCM) and its re-
semblance to IO-HMM

As mentioned by Chapelle and Zhang [40], many click models show resem-
blance with hidden Markov models. However, to our knowledge, this resem-
blance has so far not been made explicit. Neither has previous literature taken
advantage of this resemblance. That is unfortunate, as we do believe there is
an advantage to such an approach. Writing out the updates for the parameters
Ω in a specific click model can be a tedious and error prone job, as is somewhat
illustrated in [49, Ch. 4]. Furthermore, this approach only makes partial use
of the resemblance between the different click models to quickly find an esti-
mation procedure for Ω. Using the IO-HMM, we are (only) required to define
the latent state space, and transition probabilities ϕ(i)

k′k,t
(Ω) corresponding to

a particular click model, after which we can use the IO-HMM machinery to
evaluate Q(Ω, Ω̂).

To show that we can indeed use IO-HMM to estimate click models, we will
first provide a somewhat general definition of a click models having a cascade
effect. That is, where the probability of a user clicking an item at position t
in a search engine result page (SERP) depends on clicks/skips on items before
t, but not after t. First, we shall introduce some extra notation.

We now let i represent a single query session on a search engine. We define a
query session as a single realization of the variables {xt,ψt, yt}t=1,...,T , with la-
tent state ψt = (ψt,1, . . . , ψt,P), ψt,p ∈ {0, 1}, and P(ψt,p = 1|P(ψt,p);xt,Ω) =
ϑt,p. xt has the same interpretation as before, while yt ∈ {0, 1}, with yt = 1
if item at position t is clicked, and yt = 0 if the t-th item is not clicked (i.e.,
skipped). We assume there is exactly one configuration of ψt that leads to a
positive probability of yt = 1. We call this state the ‘click state’, and denote
it by Ct. I.e., we allow which state is the click state to depend on t.

Each query session results in a SERP consisting of items Si ⊂ V, with V =
{1, . . . , V } being the set of possible items the search engine may return. For

35

ψ1

x1

y1

ψ2

x2

y2

ψT

xT

yT

Figure 3.2: GCM

simplicity, we will assume each list Si has the same number of items T , and each
item in Si occupies an unique position t ∈ {1, . . . , T}. The item in position t
in list Si is given by the bijective function ri(t). Since, like in IO-HMM, we
assume realizations i = {1, . . . , n} to be conditionally independent given x

(i)
1:T ,

we will briefly omit index i in Definition 3.3.2.

Definition 3.3.2. A Generalized Cascade Model (GCM) is a Dynamic Bayes-
ian Network consisting of observed states {xt, yt}t=1,...,T , and latent states
{ψt}t=1,...,T for which, for t > 1: P(ψt) = {ψt−1, yt−1,xt}; P(ψ1) = {xt},
and for all t: P(yt) = {xt,ψt}, and P(xt) = ∅.

A graphical representation of GCM is given in Figure 3.2. The similarity
between GCM and IO-HMM should become quickly apparent. In GCM, tran-
sition probabilities also depend on yt−1, which is not the case for IO-HMM.
On the other hand, GCM assumes yt to be binary, instead of in RR2 , and ψt is
possibly multi-dimensional. However, as Proposition 1 shows, when optimizing
using EM, these distinctions do not matter.

Proposition 1. QGCM(Ω, Ω̂) can be written in the form of Eq. (3.6).

Proof. We will first convert the multi-dimensional state space into a single-
dimensional one, which can easily be done as all we assumed all latent state
variables are binary. E.g., we may use the transformation

z
(i)
t = bin(ψ

(i)
t) =

P∑
p=1

2p−1ψ
(i)
t,p + 1, (3.9)

to obtain the single-dimensional discrete state space. Note that the +1 is
strictly not necessary, but simply added to map to some discrete state space
counting from 1.

36

Using Eq. (3.4), we now have

QGCM(Ω, Ω̂) = EZ|Y,X,Ω̂
[
lGCM
c (Ω;Z,Y,X)

]
= EZ|Y,X,Ω̂

[
n∑
i=1

logP
(
y

(i)
1:T , z

(i)
1:T |x

(i)
1:T ; Ω

)]

= EZ|Y,X,Ω̂

[
n∑
i=1

T∑
t=1

K∑
k=1

1{z(i)t =k}

× logP
(
y

(i)
t |z

(i)
t = k,x

(i)
t , y

(i)
t−1; Ω

)
+

K∑
k′=1

1{z(i)t =k,z
(i)
t−1=k′}

× logP
(
z

(i)
t = k|z(i)

t−1 = k
′
,x

(i)
t , y

(i)
t−1; Ω

)]
=

n∑
i=1

T∑
t=1

K∑
k=1

ζ̂
(i)
k,t logP

(
y

(i)
t |z

(i)
t = k,x

(i)
t , y

(i)
t−1; Ω

)
+

K∑
k′

ĥ
(i)

k′k,t
logP

(
z

(i)
t = k|z(i)

t−1 = k
′
,x

(i)
t , y

(i)
t−1; Ω

)

=

n∑
i=1

T∑
t=1

K∑
k=1

ζ̂
(i)
k,t logP

(
y

(i)
t |z

(i)
t = k,x

(i)′

t ; Ω
)

+

K∑
k′

ĥ
(i)

k′k,t
logP

(
z

(i)
t = k|z(i)

t−1 = k
′
,x

(i)′

t ; Ω
)

=

n∑
i=1

T∑
t=1

K∑
k=1

(
ζ̂

(i)
k,t log fy

(
y

(i)
t |z

(i)
t = k,x

(i)′

t ; Ω
)

+

K∑
k′=1

ĥ
(i)

k′k,t
log ϕ̃

(i)

k′k,t
(Ω)

 ,

(3.10)

with x
(i)′

t =
(
x

(i)
t , y

(i)
t−1

)
.

Hence, as a result, when our objective is to estimate a GCM using EM, we
can simply model it as it were an IO-HMM by adding the previous click/skip

37

to the input vector. For notational simplicity, we will in the remainder of this
chapter write x

(i)
t instead of x(i)′

t . We deliberately write ϕ̃(i)

k′k,t
(Ω), and not

ϕ
(i)

k′k,t
(Ω), for reasons that will become apparent in Proposition 2.

3.4 On the estimation of GCMs using EM for
the IO-HMM

3.4.1 Notes on the E-step
As briefly discussed, we believe that modeling GCMs as IO-HMMs has as
main advantage that, given transition probabilities ϕ̃(i)

k′k,t
(Ω), the IO-HMM

framework directly provides an EM procedure. Although this approach will
not reduce time complexity, we believe it does reduce the effort required of
finding expressions for the EM-updates. In particular, given Proposition 1,
Bengio and Frasconi [16] immediately provide the expression required during
the E-step. Since GCM is a simplified case of IO-HMM, we can make use of
Proposition 2 to somewhat simplify Expression (3.10).

Proposition 2. There exists transition probabilities {ϕ(i)

k′k,t
(Ω)}t=1,...,T

i=1,...,n , with

k
′
, k ∈ {1, . . . ,K + 1}, such that maximizing QGCM(Ω, Ω̂) is equivalent to

maximizing

Q
′

GCM(Ω, Ω̂) =

n∑
i=1

T∑
t=1

K+1∑
k=1

K+1∑
k′=1

ĥ
(i)

k′k,t
logϕ

(i)

k′k,t
(Ω). (3.11)

Proof. As one might expect, our objective here is to absorb the emission prob-
ability fy(·) into the new transition probabilities ϕ(i)

k′k,t
(Ω). If we define

ϑ
(i)
t,y = fy

(
y

(i)
t |z

(i)
t = k,x

(i)′

t ; Ω
)
, (3.12)

then a natural thing to do would be to introduce a new latent binary vari-
able ψ(i)

t,y, with P(ψ
(i)
t,y = 1|ψ(i)

t ,x
(i)′

t ; Ω) = ϑ
(i)
t,y. However, this would imply

P(ψ
(i)
t,y) = {ψ(i)

t ,x
(i)
t }. Hence, the resulting model would not be a GCM, as

ψ
(i)
t,y depends on the current latent state, not the previous latent state. To

circumvent this problem, we can include the dependency of the emission on
the current state into the definition of the transition probability. Here we use

38

that there exists only one click state. I.e., only when k = Ct does ϑ(i)
t,y affect

the transition probability.

At this point, it is useful to consider the expression that we, according to Eq.
(3.10), would expect for the transition probability. Let ψ

′

k = (ψ
′

k,1, . . . , ψ
′

k,P)

be the (unique) vector corresponding to bin(ψ
′

k) = k. Under the definition of
GCM (Def. 3.3.2), {ψ(i)

t,1, . . . , ψ
(i)
t,P } are mutually independent given x

(i)
t and

ψ
(i)
t−1, such that we would obtain

ϕ̃
(i)

k′k,t
(Ω) =

P∏
p=1

(
ϑ

(i)
t,p

)ψ′t,p (
1− ϑ(i)

t,p

)1−ψ
′
t,p

. (3.13)

Now let P(ψ
(i)
t,y = 1|ψ(i)

t−1,x
(i)′

t ; Ω) = ϑ
(i)
t,y, then after including the additional

variable, the transition probability becomes

ϕ
(i)

k′k,t
(Ω) =

P∏
p=1

(
ϑ

(i)
t,p

)ψ′t,p (
1− ϑ(i)

t,p

)1−ψ
′
t,p

×

[(
ϑ

(i)
t,y

)ψ′t,y (
1− ϑ(i)

t,y

)1−ψ
′
t,y

]1{k=Ct}

.

(3.14)

Now let z(i)′

t = bin
(
ψ

(i)′

t

)
, with ψ(i)′

t =
(
ψ

(i)
t,1, . . . , ψ

(i)
t,P , ψ

(i)
t,y

)
being the state

in the new augmented state space, we obtain fy(y
(i)
t |z

(i)′

t = k,x
(i)
t ; Ω) = 1.

Hence, indeed this new emission probability does not depend on Ω, and the
emission can be ignored in the maximization.

It should also be noted that in many click models, including CZM and UBM,
the emission probability does not depend on Ω by definition. Hence, many
models do not require an additional latent state variable, and for those models
the cardinality of the state space remains the same. Also, the analysis of
Proposition 2 still holds if we would have ϑ(i)

t,y = 1, hence we can always
augment the state space. For notational simplicity, we will redefine K and P
to represent the size of the augmented state space and augmented number of
latent variables at (i, t) respectively.

Dropping superscript (i) for a moment, the E-step is given by Proposition 3,

39

which are also known as the forward-backward equations.

Proposition 3. Let αk,t = P(y1:t, zt = k|x1:t; Ω) and βk,t = P(yt+1:T |zt =
k,xt+1:T ; Ω), then we obtain:

α̂k,t = 1{yt=1|zt=k}

K∑
k′=1

ϕ̂k′k,t(xt)α̂k′ ,t−1, (3.15)

β̂k,t =

K∑
k′=1

ϕ̂kk′ ,t(xt+1)β̂k′ ,t+11{yt+1=1|zt+1=k′}, (3.16)

and

ĥk′k,t =
β̂k,tα̂k′ ,t−1ϕ̂k′k,t(xt)∑K

`=1 α̂`,T
1{yt=1|zt=k}, (3.17)

with ϕ̂kk′ ,t(xt) the estimated transition probability under Ω̂.

Proof. Follows directly from [16].

Hence, Proposition 3 provides the desired explicit expressions of the E-step for
the GCM.

3.4.2 Notes on the M-step
One useful property of GCM is that Eq. (3.11) can be split into multiple
optimization problems.

Proposition 4. Let θp be the weight vector of dimension mp for parameter
p, such that ϑ(i)

t,p = fpact(x
(i)
t,p;θp) = P(ψ

(i)
t,p = 1|P(ψ

(i)
t,p),x

(i)
t,p; Ω), with x

(i)
t,p the

covariate vector for parameter p, then

arg max
Ω

QGCM (Ω, Ω̂) =

{
arg max
θp∈Rmp

Q
′

GCM (θp, Ω̂)

}
p=1,...,P

. (3.18)

Proof. Let ψ
′

k = (ψ
′

k,1, . . . , ψ
′

k,P) be the (unique) vector corresponding to
bin(ψ

′

k) = k. Note that we now assume this represents the state in the aug-
mented state space, i.e., the vector includes ψ

′

k,y, which was defined in Propo-
sition 2. Furthermore, let K(k) be original state that we would obtain by
omitting ψ

′

k,y in ψ
′

k.

40

We define A(+)
t,p,i, A

(−)
t,p,i as be the set of all transition (k

′
, k) ∈ {1, . . . ,K +

1} × {1, . . . ,K + 1} having ϑ(i)
t,p ∈ (0, 1), and for which ψ(i)

t,p = 1 and ψ(i)
t,p = 0

respectively. Then

Q
′

GCM(Ω, Ω̂) =

n∑
i=1

T∑
t=1

K+1∑
k=1

K+1∑
k′=1

ĥ
(i)

k′k,t
logϕ

(i)

k′k,t
(Ω)

=

n∑
i=1

T∑
t=1

K∑
k=1

K∑
k′=1

ĥ
(i)

k′k,t

∑
ψ∈{ψ(i)

t,1,...,ψ
(i)
t,P }

\{ψ(i)
t,y}

logP(ψ|P(ψ
(i)
t,p),x

(i)
t,p; Ω)

+ 1{K(k)=CK(k)} logP(ψ
(i)
t,y = ψ

′

k,y|P(ψ
(i)
t,y),x

(i)
t,y; Ω)

=

P∑
p=1

n∑
i=1

T∑
t=1

∑
(k′ ,k)∈A(+)

t,p,i

ĥ
(i)

k′k,t
logP(ψ

(i)
t,p = 1|P(ψ

(i)
t,p),x

(i)
t,p; Ω)

+
∑

(k′ ,k)∈A(−)
t,p,i

ĥ
(i)

k′k,t
logP(ψ

(i)
t,p = 0|P(ψ

(i)
t,p),x

(i)
t,p; Ω)

(3.19)
Hence, optimizing QGCM(Ω, Ω̂) is therefore equivalent to optimizing

QpGCM(θp, Ω̂) =

n∑
i=1

T∑
t=1

∑
(k′ ,k)∈A(+)

t,p,i

ĥ
(i)

k′k,t
log fpact(x

(i)
t,p;θp)

+
∑

(k′ ,k)∈A(−)
t,p,i

ĥ
(i)

k′k,t
log(1− fpact(x

(i)
t,p;θp))

(3.20)

for each p ∈ {1, . . . , P} separately.

Proposition 5. Let

ĥ(+)
p =

n∑
i=1

T∑
t=1

∑
(k′ ,k)∈A(+)

t,p,i

ĥ
(i)

k′k,t
, (3.21)

41

and

ĥ(−)
p =

n∑
i=1

T∑
t=1

∑
(k′ ,k)∈A(−)

t,p,i

ĥ
(i)

k′k,t
. (3.22)

In case fpact(θp;x
(i)
t,p) = θp = ϑp, θp ∈ (0, 1), the M-step becomes:

ϑ̂p =
ĥ

(+)
p

ĥ
(+)
p + ĥ

(−)
p

(3.23)

Proof. Follows directly from [49, pp. 27-30].

Hence, by modeling GCM as an IO-HMM, we find exactly the same EM up-
dates as in [49]. However, IO-HMM also directly gives the E-step (Proposition
3), which in [49] still had to be derived for each variable separately. Further-
more, Bengio and Frasconi [16] also show that if xt = xt ∈ {1, . . . , L}, for
some L ∈ N, then the M-step also has an analytical solution. Apart from
introducing IO-HMM and its estimation using EM, Bengio and Frasconi [16]
also model P(ψ

(i)
t,p|P(ψ

(i)
t,p),xt; Ω) as the output of a neural network.

3.4.3 Vectorized EM
Vectorized E-step To conclude this section, we will elaborate on how
QGCM is optimized in the gecasmo package. This requires rewriting the E-
step and M-step to vector notation. Since in the following we consider a single
query session, we will again drop superscript i.

We define

A =

α10 . . . α1T

...
. . .

...
αK0 . . . αKT

 , B =

β10 . . . β1T

...
. . .

...
βK0 . . . βKT

 , (3.24)

42

and let

Ht =

h11,t . . . h1K,t

...
. . .

...
hK1,t . . . hKK,t

 , Mt =

ϕ11,t . . . ϕ1K,t

...
. . .

...
ϕK1,t . . . ϕKK,t

 ,

D =

 δ10 . . . δ1T
...

. . .
...

δK0 . . . δKT

 ,

(3.25)

with δkt = 1 if state k is the click state at time t (0 otherwise). Note that
we only have one click state, i.e.,

∑K
k=1 δkt = 1 for all t ∈ {0, . . . , T}. Let �

be the element-wise product. Using Expressions (3.15), (3.16), and (3.17), we
obtain the following vectorized E-step (Alg. 1).

Algorithm 1: Vectorized E-step
1 B1:K,T ← 1
2 A1:K,0 ← D1:K,0

3 for t← 1 to T do
4 A1:K,t ← yt

[
D1:K,t �

(
M>t A1:K,t−1

)]
+

(1− yt)
[
(1−D1:K,t)�

(
M>t A1:K,t−1

)]
5 for t← T to 1 do
6 Λt ← yt (D1:K,t �B1:K,t) + (1− yt) [(1−D1:K,t)�B1:K,t]

7 B1:K,t−1 ←MtΛ
>
t

8 Ht ←
[

Λt∑K
k=1 αk,T

A>1:K,t−1

]
�M>t

43

Vectorized M-step For convenience, we will slightly rewrite (3.20). Let

c
(o)

k′k,t,p,i
=

1 if (k

′
, k) ∈ A(o)

t,p,i, o = +

−1 if (k
′
, k) ∈ A(o)

t,p,i, o = −
0 otherwise

, (3.26)

I
(o)
t,p,i =

c
(o)
11,t,p,i c

(o)
12,t,p,i · · · c

(o)
1K,t,p,i

...
...

. . .
...

c
(o)
K1,t,p,i c

(o)
K2,t,p,i · · · c

(o)
KK,t,p,i

 , (3.27)

and
w

(o)
t,p,i =

((
Ĥ

(i)
t � I

(o)
t,p,i

)
1
)>

1, (3.28)

with 1 a vector of ones of size K, o ∈ {+,−}. I.e., w(o)
t,p,i is the grand sum of

the matrix obtain from Ĥ
(i)
t � I

(o)
t,p,i.

Now let wt,p,i = w
(+)
t,p,i + w

(−)
t,p,i. Expression (3.20) can then be rewritten as

QpGCM(θp, Ω̂) =

n∑
i=1

T∑
t=1

w
(+)
t,p,i log fpact(xt;θp) + (−w(−)

t,p,i) log (1− fpact(xt;θp))

=

n∑
i=1

T∑
t=1

|wt,p,i|
[
sgn(wt,p,i) + 1

2
log fpact(xt;θp)

+

(
1− sgn(wt,p,i) + 1

2

)
log(1− fpact(xt;θp))

]
.

(3.29)
In the latter expression, we use that for some triple (t, p, i), either w(+)

t,p,i or w
(−)
t,p,i

is non-zero. Hence, we only have to keep one T ×P ×n tensor in memory, and
use the sign of the weight to determine whether the weight is with respect to
ψ

(i)
t,p = 1 or ψ(i)

t,p = 0. Although the former expression in (3.29) has the same
form as binary cross-entropy, we have w(+)

t,p,i + (−w(−)
t,p,i) ≤ 1, hence it should

be interpreted as a weighted log loss function.

Finally, the GCM’s EM algorithm is summarized in Algorithm 2.

44

Algorithm 2: GCM’s EM procedure

inputs : Initial parameter estimates Ω̂;
Covariates matrices {Xp}p=1,...,P ;
Parameter activation functions {fpact(·)}p=1,...,P ;
Parameter activation matrices {I(+)

p,t , I
(−)
p,t }

t=t...,T
p=1,...,P ;

Transition matrices {M (i)
t }

t=1,...,T
i=1,...,n ;

Tolerance parameter ε;
output: Fitted parameters {θ̂p}p=1,...,P

1 Choose some initial parameters {θ̂p}p=1,...,P , and ∆ > ε;
2 while ∆ > ε do
3 Run the E-step (Alg. 1), given current estimates Ω̂;
4 Compute the weights for each variable p using Expression (3.28);
5 Find for each variable p new weights θ̂

′

p by optimizing (3.29);
6 ∆ =

∑p
p=1 |θ̂p − θ̂

′

p|;
7 Set θ̂p ← θ̂

′

p;

8 return {θ̂p}p=1,...,P ;

3.5 Modeling click models as GCMs

3.5.1 Mapping click models to GCM
In Section 3.3.2, we introduced the generalized cascade model, and showed
that optimization with EM is equivalent to that of the IO-HMM model, given
that we add the click/skip at position t − 1 to the input vector x

(i)
t . In this

section, we will show that common click models such as the Chapelle-Zhang
model (CZM) [40], and the User Browser Model (UBM) [76], can be rewrit-
ten as GCMs. As a direct consequence, any simplification of CZM or UBM
(such as the cascade model [53] or the dependent click model [95]) are also
GCMs. In fact, any click model where the latent variables can be combined
into one discrete latent state variable zt, such that the remaining model is still
Markovian w.r.t. its parent as defined in GCM’s definition (Def. 3.3.2), can
be modeled as GCM. Hence, also more general models than CZM and UBM
can be modeled as GCM.

Definition 3.5.1. The Chapelle-Zhang model (CZM) [40] is a Dynamic Bayes-
ian Network consisting of latent binary variables {R(i)

ri(t)
, S

(i)
ri(t)

, E
(i)
t }

i=1,...,n
t=1,...,T ,

45

and observed binary variables {y(i)
t }

i=1,...,n
t=1,...,T , where R

(i)
ri(t)

= 1 if the user finds

the item at position ri(t) attractive (0 otherwise), S(i)
ri(t)

= 1 if the user is satis-
fied with the item at position ri(t) after having clicked the item (0 otherwise),
E

(i)
t = 1 if the item at position t is evaluated by the user (0 otherwise), and

y
(i)
t = 1 if the item at position t is clicked (0 otherwise). Given SERP Si, users
navigate through the SERP according to

P(R
(i)
ri(t)

= 1) = φ
(R)
ri(t)

; (3.30)

P(S
(i)
ri(t)

= 1|y(i)
t = c) =

{
φ

(S)
ri(t)

if c = 1

0 if c = 0
; (3.31)

P(E
(i)
t = 1|E(i)

t−1 = a, S
(i)
ri(t−1) = b) =

{
γ if a = 1, b = 0
0 otherwise , t > 1; (3.32)

E
(i)
1 = 1; (3.33)

y
(i)
t = 1 ⇐⇒ E

(i)
t = 1, R

(i)
ri(t)

= 1. (3.34)

Definition 3.5.2. The User Browser Model (UBM) [76] is a Dynamic Bayes-
ian Network consisting of latent binary variables {R(i)

ri(t)
, E

(i)
t }

i=1,...,n
t=1,...,T , and

observed variables {y(i)
t }

i=1,...,n
t=1,...,T , all having the same interpretation as in CZM,

for which we assume users navigate through a SERP according to

P(R
(i)
ri(t)

= 1) = φ
(R)
ri(t)

; (3.35)

P(E
(i)
t = 1|y(i)

t′
= 1) = γt′ t, t

′
< t; (3.36)

y
(i)
0 = 1; (3.37)

y
(i)
t = 1 ⇐⇒ E

(i)
t = 1, R

(i)
ri(t)

= 1. (3.38)

In Propositions 6 and 7 we again drop super-/subscript i.

46

Proposition 6. CZM is a GCM

Proof. Let ψt = (Sr(t−1), Rr(t), Et) and zt = bin(ψt). For completeness, we
introduce auxiliary variables Sr(0) = 0 and xt = 1 for all t. Then indeed we
find P(zt) = {zt−1, yt−1, xt} for t > 1, P(z1) = {x1}, P(yt) = {xt, zt}, and
P(xt) = ∅ for all t.

Hence, the idea of modeling click models as GCM is to combine the binary
latent variables ψ(i)

t,1, . . . , ψ
(i)
t,P between two subsequent clicks into one latent

variable by using Equation (3.9). The size of the state space of zt therefore
becomes O(2P). If after this transformation the click model is Markovian with
respect to a subset of the parents as defined in GCM, then we can conclude
that the model is a GCM, and we are allowed to use the IO-HMM machinery
to estimate the model’s parameters using EM.

Perhaps less obvious is that UBM can also be modeled as GCM. Looking at
the definition of UBM (Definition 3.5.2), we find that UBM is Markovian in
the last clicked item. Hence, it is not Markovian in the previous position, as
is required by GCM. However, we can pass information about the last clicked
item from position t to position t+ 1, by expanding the state space. This way,
we can make UBM Markovian in the previous position.

Proposition 7. UBM is a GCM

Proof. From the definition of UBM, we find that it only has, at some time t,
two latent variables: Et and Rr(t). The parents are given by P(Rr(t)) = ∅,
and P(Et) = {yt′}, with t

′
= max{t̃ ∈ {0, . . . , t − 1}|yt̃ = 1}. We now define

et = (e1,t, . . . , eT,t), where

et′ ,t =

{
1{t′<t}et′ ,t−1(1− yt) + 1{t′=t}yt if t > 0

1 if t = 0
. (3.39)

I.e., et stores the last clicked item before position t. Since et′ ,t ∈ {0, 1}, we
can define ψt = (et, Rr(t), Et), and zt = bin(ψt). As a result, we again obtain
a one-dimensional discrete latent state space. Let xt = 1 for all t, then indeed
we find P(zt) = {zt−1, yt−1, xt} for t > 1; P(z1) = {x1}; P(yt) = {xt, zt}, and
P(xt) = ∅ for all t.

Following the derivations of Propositions 6 and 7, we could replace φ(A)
ri(t)

,

φ
(S)
ri(t)

, and γ with activation functions f (A)
act (x

(A)
t ;θ(A)), f (S)

act (x
(S)
t ;θ(S)), and

47

f
(E)
act (x

(E)
t ;θ(E)), in case of CZM. To ensure the output of these activation

functions are probabilities, we ensure the activation functions all map to the
interval (0, 1). Here θ = (θ(A),θ(S),θ(E)) is a vector of unknown parameters,
and x

(A)
t ,x

(S)
t ,x

(E)
t is observed data, stored in xt, i.e., xt = (x

(A)
t ,x

(S)
t ,x

(E)
t).

The same argument holds for UBM. As a consequence, also generalizations of
CZM and UBM can be modeled as GCM (e.g., the Bayesian Sequential State
Model [229], or many of the ‘advanced click models’ described in Chuklin et al.
[49, Ch. 8]), as long as the Markovian properties of GCM are met.

In terms of the cardinality of the state space, we do notice that adding the
vector of the last clicked item to the state space, as we have done with UBM,
at first seems to lead to a considerable memory burden. Where CZM has a
cardinality smaller than 23 + 1 (as some combinations of {Rt, Et, St−1} are
infeasible), for UBM this becomes O(2T). However, in most cases the number
of positions T can be taken small. Click probabilities have a geometric decay in
T , and many empirical studies show that these probabilities are often negligible
for T > 10 (e.g., [53, 22]). Hence, we do not expect such state spaces to become
a burden.

3.5.2 Explicit mappings
In the following examples, we will provide an explicit mapping from CZM and
UBM to GCM. That is, how the transition matrix and activation matrices of
these two models could be defined to be able to run the GCM’s EM procedure
(Alg. 2). These example mappings have also been implemented and can by
found on the gecasmo’s Github page [60].

CZM to GCM We will first consider how CZM can be written as GCM. As
Proposition 6 already showed, CZM can be modeled as a GCM by defining the
latent state as ψ(i)

t = (S
(i)
ri(t−1), R

(i)
ri(t)

, E
(i)
t), where S(i)

ri(t−1), R
(i)
ri(t)

, and E
(i)
t

are interpreted as in Definition 3.5.1. One of the possible discretizations of the
state space is given by Table 3.1. We have 3 binary variables, which normally
would lead to a state space of size 8. However, we add an additional absorbing
state O, and the two states having (S

(i)
ri(t−1) = 1, E

(i)
t = 1) are infeasible,

therefore we end up with a total of 7 states. The click state represents the state
in which an item is clicked, and as discussed before, we assume there is only
one such state for each t. For convenience, we also added the corresponding
click value y(i)

t , though it is not part of the state space.

Using this state mapping and the probabilities introduced in Definition 3.5.1,

48

State S
(i)
ri(t−1) E

(i)
t R

(i)
ri(t)

y
(i)
t

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 (Ct) 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 (O) - - - -
- 1 1 0 0
- 1 1 1 1

Table 3.1: CZM state space mapping

and by writing x̄ = 1− x, we find the transition matrix.

Mi,t =

0 0 0 0
0 0 0 0

γ̄iφ̄
(A)
ri(t)

γ̄iφ
(A)
ri(t)

γiφ̄
(A)
ri(t)

γiφ
(A)
ri(t)

γ̄iφ̄
(A)
ri(t)

φ̄
(S)
ri(t)

γ̄iφ
(A)
ri(t)

φ̄
(S)
ri(t)

γiφ̄
(A)
ri(t)

φ̄
(S)
ri(t)

γiφ
(A)
ri(t)

φ̄
(S)
ri(t)

0 0 0 0
0 0 0 0
0 0 0 0

0 0 1
0 0 1
0 0 0

φ̄
(A)
ri(t)

φ
(S)
ri(t)

φ
(A)
ri(t)

φ
(S)
ri(t)

0

0 0 1
0 0 1
0 0 1

(3.40)

To further define the model in GCM, we rely on the activation matrices
{I(+)
p̃,t , I

(−)
p̃,t }

t=t...,T

p̃=1,...,P̃
, and the activation functions {fpact}p=1,...,P . The activation

matrices can directly be obtained from the transition matrix, using Equations
(3.26), (3.27), and (3.40).

49

UBM to GCM As discussed in Proposition 7, we can model UBM as
a GCM by passing information about the last clicked item through posi-
tions 1, . . . , T . The state of the system at some (i, t) is defined by ψ(i)

t =

(e
(i)
t , R

(i)
ri(t)

, E
(i)
t). For simplicity, we will replace et by t

′
, i.e., the last clicked

item before t, such that we can use the following state space mapping (Table
3.2). Note that, although we have multiple click states, given t

′
, there is still

only one click state.

State t
′

E
(i)
t R

(i)
ri(t)

y
(i)
t

0 0 0 0 0
1 0 1 0 0
2 0 0 1 0
3 (Ct=0) 1 1 1 1
4 1 0 0 0
.
4T T 0 0 0
4T + 1 T 1 0 0
4T + 2 T 0 1 0
4T + 3 (Ct=T) T 1 1 1
O - - - -

Table 3.2: UBM state space mapping

The UBM transition matrix is somewhat more involved than that of CZM.
First, we consider two 4 × 4 matrices containing the probabilities of click-
ing/skipping some item at position t, given the last click was at position t

′
.

The click probability matrix is given by

M
(+)

i,t′ t
= 1

(
0, 0, 0, φ(R)γt′ t

)
. (3.41)

Here, the elements in the vector (0, 0, 0, φ(R)γt′ t) correspond with the states
(E

(i)
t = 0, R

(i)
ri(t)

= 0); (E
(i)
t = 1, R

(i)
ri(t)

= 0); (E
(i)
t = 0, R

(i)
ri(t)

= 1); and

(E
(i)
t = 1, R

(i)
ri(t)

= 1). The skip probability matrix is given by

M
(−)

i,t′ t
= 1

(
φ̄(R)γ̄t′ t, φ̄(R)γt′ t, φ(R)γ̄t′ t, 0

)
. (3.42)

Here 1 is a vector of ones with 4 elements. By combining these matrices into

50

one transition matrix, we obtain

Mi,t′ t =

M
(−)
i,0t M+

i,t′1
. . . M+

i,t′T
0

[0] M
(−)
i,1t . . . M+

i,t′T
0

...
.

... 0
[0] . . . M−

i,(T ′−1)T
M+
i,(T ′−1)T

0

[0] 1
0 1

, (3.43)

with [0] a 4 × 4 matrix consisting of only zeros. The vectors 0 and 1 are
both vectors of 4 elements with only zeros and ones respectively. The last row
contains only scalars.

Again, the activation matrices can be found using Expressions (3.26), (3.27),
and (3.40).

3.6 Conclusion

In this chapter, we presented two contributions. First, we proposed an alterna-
tive view on estimating click models. We defined the generalized cascade model
(GCM), and showed that the expectation-maximization (EM) algorithm for
GCMs is equivalent to the EM algorithm of an Input-Output Hidden Markov
Model (IO-HMM), given that we add the observed click at position t − 1 to
the covariate vector at time t. As a consequence, we can directly use the EM
algorithm for IO-HMMs, which provides us with an estimation procedure for
GCMs without having to derive further expressions.

Since many click models, including the User Browser Model (UBM) and Cha-
pelle-Zang Model (CZM), can be written as GCM, it can be applied to a large
class of click models. Modeling click models as GCM also has the benefit that,
if a click model can be modeled as a GCM and the covariate vector xt has a
finite countable state space, then the M-step has an analytical solution. This
solution is equivalent to the result one would obtain by explicitly writing out
the expressions of the E-step and M-step of the algorithm.

Second, we introduced the gecasmo package, which not only includes an EM
implementation for IO-HMMs, but also takes care of the mapping from GCM
to IO-HMM. As a result, one only needs to define, for some specific click
model, the activation matrices and activation functions, from which the IO-

51

HMM’s transition matrix can be determined. To provide some more clarity on
how to define such activation matrices and functions, we included an example
for UBM and CZM. Also implementation-wise, the usage of IO-HMM’s EM
algorithm is convenient. Where previous packages for estimating click models
relied on the user having to implement the EM updates manually, gecasmo
only requires the activation matrices and activation functions. Furthermore,
as users can define their activation functions as neural networks, the model
contains flexibility in writing click models as GCMs.

Further research may move into several directions. First, in this chapter we
mainly focused on UBM and CZM as examples, as these two click models
are both generalization of many other click models, but also because they are
often used as a starting point for more complex models. As we have seen in
the UBM case, even models with a non-first-order examination assumption
can be modeled as GCM by expanding the state space, and under small list
sizes, do not suffer too much from the curse of dimensionality. We expect that
even further generalizations to UBM or CZM can be mapped to a GCM. It
would be interesting to consider to what extent these generalizations can be
modeled as GCM, and if such mapping remains practical.

Second, the method could benefit from further empirical validation. In par-
ticular, for implementational convenience, Expression (3.29) is numerically
optimized in gecasmo. However, many click models have analytical solutions
to the M-step (see Section 3.4.2). I.e., it would be beneficial to further exam-
ine the stability of the numerical method, and compare the results with the
analytical solution.

Third, we limited our scope to EM procedures, which does not imply that alter-
native estimation procedures, such as variational inference or Markov Chain
Monte Carlo, could not benefit from viewing click models as GCM. On the
contrary, it would be interesting to consider whether modeling click models as
GCM, or more general as IO-HMM, is also convenient under these estimation
techniques.

52

3.7 Overview of notation

Table 3.3: Notation overview

Variable Interpretation

{1, . . . , n} The set of query sessions, indexed by i.
{1, . . . , V } Set of all items, indexed by v.
Si Set of items in SERP corresponding to

query session i.
{1, . . . , T} Set of all list positions, indexed by t.
Ω Set of all parameters in the GCM.
K Size of the (possibly augmented) state

space.
ri(t) The item in list position v of query session

i.
Ct The click state at time t.
ψ

(i)
t = (ψ

(i)
t,1, . . . , ψ

(i)
t,P) Vector of all latent variables at position t

of query session i, which determines the
latent state of GCM, and can uniquely be
mapped to z(i)

t .
x

(i)
t,p = (x

(i)
t,p,1, . . . , x

(i)
t,p,mp

) Vector of covariate values for parameter p.
ϑ

(i)
t,p Probability of a latent variable being one,

given the previous state.
fpact(·) Activation function for paramter p.
θp Weight vector for parameter p.
y

(i)
t 1 if the item in position t of SERP i is

clicked, 0 otherwise.
P(X) The set of all parents of node X in a dy-

namic Bayesian network.
z

(i)
t The single-dimensional discrete state that

uniquely corresponds to some ψ(i)
t .

ϕ
(i)

k′k,t
, Mi,t Transition probability and transition ma-

trix.
ζ

(i)
k,t Probability of being in state k at (i, t).
fy(·) Emission probability of the IO-HMM.

53

Table 3.3 – Continued
Variable Interpretation

hk′k,t, Hi,t Expectation of the joint distribution of be-
ing in state k at time t, and state k

′
at time

t − 1, given all available data and current
estimate Ω̂.

c+
k′k,t,p

, c−
k′k,t,p

, I+
p,t, I

−
p,t Indicators of whether parameter p posi-

tively (ψp = 1) or negatively (ψp = 0) in-
fluences the transition probability between
state k

′
and k.

α
(i)
k,t, Ai Forward probabilities in the forward-

backward equations.
β

(i)
k,t, Bi Backward probabilities in the forward-

backward equations.
δ

(i)
kt , Di Indicator of whether state k is a click state.
R

(i)
v , φ(R)

v,i Indicator (probability) whether the user
(of query session i) finds item v attrac-
tive (also referred to as the relevance in
the click literature).

S
(i)
v , φ(S)

v,i Indicator whether the user (of query ses-
sion i) is satisfied with item v after a click.

Ei,t Indicator whether the item at position t is
evaluated.

γi Search continuation probability, has differ-
ent sub/superscripts based on the underly-
ing click model.

54

Chapter 4

Click Model Simulation: A
Case Study

In this chapter, we propose a click simulation model capable of simulating
users’ interactions with a search engine. We illustrate the simulation model
by applying it to the problem of detecting unique users from the session data
of a search engine. In real click datasets, the user initiating the session may
be censored, as unique users are often determined by their cookies. Therefore,
analyzing this problem using a click simulation model, for which we have an
uncensored ground truth, allows for studying the effect of cookie churn itself.
Furthermore, it allows for studying how well clustering algorithms perform in
detecting clusters of sessions that originated from a single user. To cluster ses-
sions, we compare various constrained DBSCAN*-type clustering algorithms.
From this comparison, we find that even though the clusters found by the
best DBSCAN*-type algorithm did significantly outperform other benchmark
clustering methods, it performed considerably worse when using the observed
cookie clusters. I.e., the results suggest that while clustering algorithms may
be useful to detect similar users, cookie tracking remains the preferred method
for tracking individual users.

55

4.1 Introduction

The current internet environment heavily relies on cookies for the enhancement
of our internet browsing experience. These cookies are small pieces of data
stored in the browser after being received from a server, along with a requested
web page from that server. If the internet user pushes subsequent requests to
the server, the cookie is send along, allowing the server to recognize the user
and adjust its response accordingly. Hence, as cookies allow identifying users
over multiple requests, they play a crucial role in session management, the
personalization of websites and ads, and user tracking.

However, the usage of multiple devices, multiple browsers, and the focus on
cookie management has made the problem of identifying single users over
multiple sessions more complex. One study reports that as much as 20% of all
internet users delete their cookies at least once a week, whereas this percentage
increases to 30% when considering cookie churn on a monthly basis [55]. Not
being able to track internet users may lead to sub-optimal behavior of search
engines and online ads, as these have less information about previous search
and click behavior to infer the user’s preference for certain items from. As
cookie churn and the usage of multiple devices censors the underlying user
who is generating web traffic, we call this user censoring.

Following the 2015 ICDM and 2016 CIKM machine learning challenges [109,
50], cross-device matching has in recent years received considerable scientific
attention. Cross-device matching refers to the problem of identifying individ-
ual internet users from a set of internet logs, where internet users may have
been using multiple devices, and are therefore tracked as separate users. These
studies, however, do have some limitations. Most approaches mentioned in the
literature are limited to finding pairwise matches, i.e., pairs of sessions that are
likely to originate from the same user. Such inference is however insufficient
if one is interested in identifying exclusive session clusters consisting of more
than two sessions.

Furthermore, there seems to be ambiguity in what exactly is meant by cross-
device matching, or by session clustering, and to what extent successful meth-
ods applied to one problem will also work well on other problems. The ICDM
and CIKM competitions consider the problem from the perspective of an
online advertiser, advertising on multiple websites. Other approaches (e.g.,
[55, 129, 119]) consider the problem from the perspective of a single website.
At this point, it is unclear whether approaches that work well on a single
website are likely to be successful in the online advertisement case, and vice

56

versa. Apart from this multi vs single website perspective, most datasets stud-
ied seem to originate from large advertisers or search engines, which raises the
question of how generalizable these approaches are for websites or advertisers
with less traffic or less heterogeneous searches.

To allow for sensitivity analysis in session clustering, we consider the single
website perspective, and propose a single query click simulation model that
allows for cookie censoring. Simulation has two main advantages: 1) by adjust-
ing the simulation parameters, we may study how session clustering algorithms
perform on websites with different user browsing characteristics. 2) It provides
a ground truth which, due to user censoring, is only partially observed in real
world datasets. Apart from the ground truth being useful in evaluating clus-
tering algorithms, it also allows for studying the effects of user censoring on
typical website statistics, such as the number of unique visitors on a website.

Besides introducing the simulation model, we compare several clustering ap-
proaches on multiple simulated datasets, where all clustering methods are
based on the DBSCAN* and HDBSCAN* algorithms. To measure their effec-
tiveness, we not only consider the error in terms of typical supervised clustering
error measures such the Adjusted Rand Index, but also in terms of the error in
estimating overall web statistics, such as the number of unique users, distribu-
tion of the number of sessions per user, and the user conversion distribution.

This chapter has the following structure. Section 4.2 discussed relevant litera-
ture related to session clustering. Section 4.3 discusses the simulation model,
adaptions of (H)DBSCAN*, and experimental set-up. Section 4.4 discusses
the results, whereas Section 4.5 discusses the implications and ideas for fur-
ther research.

4.2 Related work

Simulating click behavior is definitely not a new concept. Chuklin et al. [49, pp.
75-77] suggests using pre-fitted click models for this purpose, where the model
is pre-fitted to public click data sets. One risk of using pre-fitted models is an
availability bias: can the characteristics of public click data sets, commonly
provided by large search engines, easily be generalized over all search engines?
Also, these data sets do not always provide the type of information one is
interested in, such as the device used to initiate a session.

Fleder and Hosanagar [83] provide a generative approach for modeling user
preferences, which we will discuss in more depth in Section 4.3.1. This model

57

can be used as an alternative to model users’ preferences for clicking items.
Using pre-fitted or generative models do have a trade-off in terms of accuracy
vs interpretability. E.g., the former may have an accurate estimate of users’
item preference, but provides little understanding in why this preference over
different products has a certain shape, whereas for the latter we expect this
to be vice versa.

Several authors have studied how cookie censoring occurs. E.g., [52, 75, 55]
consider cookie churn, whereas [176] considers specifically cross-device behav-
ior. Results from these studies can be used to model cookie churn dynamics
in a simulation model.

Identifying unique users from sessions can be seen as a specific case of the
entity/identity resolution problem [119]. Though, what makes this problem
special is the nature of the dataset, which typically consists of a large number
of sessions, and of which clicks and web page meta-data (such as the URL)
are the main sources of information. Because of these characteristics, entity
resolution algorithms that do not account for these characteristics are likely
to fail in their objective.

Session matching can be applied from an online advertiser’s perspective, as was
the case during the 2015 ICDM and 2016 CIKM machine learning challenges
[179, 203, 233, 148, 223, 72, 191, 190, 213, 217], or from the perspective of a
single website [55, 129, 119]. What remains unclear is whether these two prob-
lems can be considered the same. Although in both cases the main motivation
for cookie-matching may be the same, e.g., increasing the click-through rate
by means of personalization, the type of data is bound to be different. When
advertising on multiple websites, the data seems to consist for a substantial
part out of a large variety of visited URLs. Hence, proposed approaches from
the advertisement perspective tend to rely heavily on natural language pro-
cessing techniques [124, 217, 190, 191, 223, 148]. In case of a single website,
the URLs or web pages’ meta-data may be less diverse, and the “unique fin-
gerprints" [181] users create while browsing a single website may therefore be
less distinctive than on multiple websites.

Most often, both the single and multiple website perspectives are modeled as
a binary classification problem. Here, a model is trained to identify whether
two feature vectors describing sessions a and b originate from the same user.
Striking is the success of tree-boosting methods for this task, which also in
both the 2015 ICDM and 2016 CIKM machine learning competitions showed
promising results. For a more in-depth discussion of the different methods
applied in cross-device matching, modeled as a binary classification problem,

58

we refer to Karakaya et al. [124]. Also worth mentioning is that many methods
proposed to both the 2015 ICDM and 2016 CIKM competitions allow for
overlapping user clusters. As the objective is to find pairs of sessions likely to
originate from the same user, this may result in sessions a, b, c to be classified
as f(a, b) = 1 and f(a, c) = 1, but f(b, c) = 0, f being the same user classifier.
Such result may be undesirable in some practical applications.

A slight generalization of the cross-device matching problem is the cookie
matching problem, in which we are given a set of sessions that are already
partially labeled into users using cookies, but only partially due to some form
of user censoring. I.e., cross-device matching and cookie matching only seem
to differ in whether one assumes that user censoring only occurs because of
cross-device usage, or also because of cookie churn. However, many approaches
proposed in the literature can be applied to both problems. Hence, in these
formulations, this distinction seems irrelevant. Various authors have consid-
ered the cookie matching problem, though under different names such as: ‘user
stitching’ [119], ‘visitor stitching’ [129], or ‘automatic identity linkage’ [112].
Like in cross-device matching, these studies tend to allow for overlapping clus-
ters.

One approach that does not allow for overlapping clusters is considered by
[179], using classical bipartite matching algorithms such as the Hungarian
algorithm. However, it is questionable to what extent these approaches are
scalable, as the paper works with relatively small data sets. Furthermore, as
users might have more than two cookies, bipartite matching will only solve
part of the problem.

Dasgupta et al. [55] also move beyond pairwise clustering. The authors con-
sider a combination of several similarity measures to determine whether two
cookies originate from the same user, and apply a greedy graph coloring algo-
rithm to cluster a session graph into user clusters. However, since multi-device
usage as we observe on websites now was not that much the case when the
paper was published in 2012, the algorithm strongly relies on the assump-
tion that only one device is used at a time. This allowed the authors to only
consider non-overlapping cookies in terms of time as candidates for cookie-
matching, whereas in the multi-device case, such a constraint would not be
able to identify unique users simultaneously using multiple devices.

In this chapter, we will use the term session clustering to relate to the problem
of identifying unique users from session data. We prefer this term, as our
methods do not per se require having partial session clusters from cookies,
something that would be the case in cookie matching. Furthermore, we seek

59

non-overlapping clusters, whereas ‘matching’ relates to training a classifier to
predict whether two sessions originate from the same user. However, still
many of the methods discussed so far are applicable to this formulation of the
problem.

We take a similar approach as [190] towards session clustering. This approach
first trains a classifier that predicts whether sessions a and b originate from
the same user (that is, share the same cookie in the data). Next, each session
forms pairs with its K nearest neighbor (K-NN) sessions, after which each
nearest neighbor is re-evaluated using the classifier on whether the session
and neighbor indeed originate from the same user. All sessions included in the
remaining pairs are subsequently clustered using a greedy clustering algorithm,
from which all sessions in a cluster are also added to the set of session pairs.
This method shows some similarity with DBSCAN [78], where also K-NN is
used to quickly identify similar data points. However, DBSCAN computes a
(possibly approximate) minimum spanning tree (MST), from which a quick
approximation can be made of the distances between points. Compared to the
greedy clustering approach by [190], this leads to a considerable speed up. On
the other hand, as DBSCAN misses a constraint on the maximum cluster size,
we will turn to two of DBSCAN’s descendants: DBSCAN* and HDBSCAN*
[31, 32], which can quite easily be adjusted to incorporate a maximum cluster
constraint.

4.3 Methods

4.3.1 Simulating click data with cookie-churn
We consider a simulation model that models how users behave when interacting
with a search engine. We choose to simulate behavior on a search engine, and
not behavior on other types of websites, as there is extensive literature on what
type of parametric models are accurate for modeling user behavior on search
engines [49]. Furthermore, apart from dedicated search engines, a search tool
is also a common feature on websites having other purposes [162]. Hence, we
believe it is likely that this behavior is also found elsewhere.

To avoid overcomplexifying the simulation model, we only consider the case in
which users push one or multiple homogeneous queries to the search engine.
I.e., the query itself is the same over all users, and one user may repeat this
query a number of times. Users do have different item preferences for the items
the search engine may return. Furthermore, the item order may be different

60

in each Search Engine Result Page (SERP). The simulation model consists of
three parts. The first part models how users navigate through the SERP, the
second part models how users’ utility function is determined, while the third
part models how the session generating user is censored due to cookie churn or
the usage of multiple devices. For reference, Table 4.6 (Section 4.6) provides
an overview of the most important variables in the simulation model.

Simulating SERP interactions

Two types of interactions between a user and the search engine are considered.
First, users may push the (homogeneous) query to the server, and receive the
SERP in response. Second, users may click on results in the SERP. At each
interaction, the server checks whether the user has an active cookie. If not, a
new cookie is send along with the server’s response (which is either the SERP,
or the content page of a particular item in the SERP), and stored in the user’s
browser. We will discuss how cookie churn is modeled in Section 4.3.1.

All interactions are stored by the server, which provides a label for the cookie,
device and query-session. This query-session is defined in terms of a set of
interactions with one SERP. Hence, where in practice a browser session is
typically defined by some period of interaction, we deliberately choose to model
a session as a set of interactions with one SERP, irrespective of the time
between two interactions with this SERP.

To simulate clicks on a search engine, we employ the Simplified Chapelle-
Zhang Model (SCZM) [40]. Although this model is known in the literature
as the Simplified Dynamic Bayesian Network model (SDBN), we renamed the
model for the reason discussed in Section 3.2. We choose to use SCZM for
two reasons: 1) the model, though simple, seems to perform reasonably well
in comparison with other parametric click models when predicting clicks [49].
2) SCZM captures the ordering effect of items in the SERP. I.e., users may
not always reflect their preferences correctly in their clicks, as their behavior
is also determined by how items are ordered. Including this ‘cascade effect’
provides more realistic results.

To describe the simulation model, the following notation will be used. Let
i ∈ {1, . . . , n} be a query-session, which produces a SERP of unique items
Si ⊆ V, with V = {1, . . . , V } the set of all items, indexed by v. We assume
all SERPs 1, . . . , n to have the same number of items T . Let ui ∈ U denote
the user initiating query-session i, with U = {1, . . . , U} the set of all users.
The user index u is used instead of ui in case the precise query-session i is

61

irrelevant. ri(t) denotes the item at position t in query-session i. Likewise,
r−1
i (v) gives the position of user u in query-session i, and rmax

i denotes the
largest position of a clicked item in Si, where rmax

i = 0 if no items were clicked
during query-session i.

SCZM considers three latent variables: R
(i)
v denotes whether user ui is at-

tracted to item v during query-session i. This variable is also known as the
relevance of item v for the user initiating session i. The probability of item
v being relevant to user u in session i is given by φ(R)

u,v . S
(i)
v denotes whether

user ui is satisfied with item v after having clicked the item, which happens
with probability φ(S)

u,v , and E
(i)
t denotes whether user ui will evaluate the item

in position t during query-session i. Whether the item at position t in SERP
i is clicked is denoted by the binary variable y(i)

t .

The model follows the cascade hypothesis, that is, it assumes a user always
evaluates the first item (E(i)

1 = 1 for all i = 1, . . . , n), after which the user
decides to evaluate subsequent items in the list according to the perceived
attraction and satisfaction of the previous evaluated items in the list according
to

E
(i)
1 = 1; (4.1)

P(R(i)
v = 1) =

{
φ

(R)
ui,v if v ∈ Si

0 otherwise
; (4.2)

P
(
S(i)
v = 1 | y(i)

r−1
i (v)

= 1
)

=

{
φ

(S)
ui,v if v ∈ Si

0 otherwise
; (4.3)

y
(i)
t = 0⇒ S

(i)
ri(t)

= 0; (4.4)

E
(i)
t−1 = 1, S

(i)
ri(t−1) = 0 ⇐⇒ E

(i)
t = 1, t > 1; (4.5)

y
(i)
t = 1 ⇐⇒ E

(i)
t = 1, R

(i)
ri(t)

= 1. (4.6)

To come up with reasonable values for φ(R)
u,v and φ

(S)
u,v , we used the same

approach as in [83]. That is, users are represented by the vectors ηu =(
η

(u)
1 , η

(u)
2

)
, u ∈ U , where η(u)

1 and η
(u)
2 are drawn from two independent

standard normal distributions. Likewise, all items can be represented by the
vectors ψv =

(
ψ

(v)
1 , ψ

(v)
2

)
, where again ψ(v)

1 and ψ(v)
2 are drawn from indepen-

dent standard normal distributions. The probabilities φ(R)
u,v , and φ

(S)
u,v are then

62

determined by the multinomial logits

φ(R)
u,v =

eωu,v+ν(R)∑
v′∈V\{v} e

ω
u,v
′ + eωu,v+ν(R)

, (4.7)

φ(S)
u,v =

eωu,v+ν(S)∑
v′∈V\{v} e

ω
u,v
′ + eωu,v+ν(S)

, (4.8)

with
ωu,v = −q log δ(ηu,ψv). (4.9)

Here δ is some distance function, in our case Euclidean distance. q ∈ R+ is
some constant value that models the users’ preferences towards nearby items,
and ν(R), ν(S) are salience parameters for attraction and satisfaction respec-
tively.

The order in which items are presented is determined as follows. First, during a
warm-up phase, we simulate clicks for Uwarm-up users, while randomly ordering
the items such that all have equal probability of being positioned at positions
t = 1, . . . , T . Next, we estimate the overall probability of each item being
found attractive, and we use these probabilities as weights to determine the
item order for subsequent query-sessions. More specifically, for each query-
session i, we draw items Si from a multinomial distribution with parameters
φ̂v/

∑
v∈V φ̂v, v = 1, . . . , V ; without replacement. The estimate of overall

attraction is given by [49, p. 26],

φ̂v =
1

|Iv|
∑
i∈Iv

y
(i)

r−1
i (v)

, (4.10)

with
Iu =

{
Si : v ∈ Si, r−1

i (v) ≤ rmax
i

}
. (4.11)

To avoid φ̂v to be (close to) zero, we impose a minimum probability of 10−5

for all v ∈ V.

63

Cookie censoring

Cookie censoring is incorporated in the simulation model in two ways: by
incorporating time and letting cookies churn after some random time T , and
by switching from device d to some other device d

′
. First, we consider the

cookie lifetime T cookie
u,o,d for the o-th cookie of user u on device d, and the user

lifetime T user
u . Whenever the cookie lifetime of cookie o ends, but the current

user lifetime is strictly smaller than T user
u , a new cookie o

′
is created, which

lifetime is drawn from the cookie lifetime distribution F cookie. For a period of
T cookie
u,o′ ,d

, all click behavior of user u on device d will now be registered under

cookie o
′
.

Second, after each query-session a user may switch from device d to d
′
, which

happens according to transition matrix P . Whenever a user switches devices,
we consider whether the user has used this device before. If not, a new cookie
o
′
is created, and we draw a new cookie lifetime from F cookie. However, the

cookie lifetime T cookie
u,o,d does not end prematurely when the user switches from

device d to d
′
. If later on the user switches back to device d while the cookie

lifetime T cookie
u,o,d has not ended, the behavior of user u is again tracked via

cookie o until another device switch occurs or cookie o churns.

Putting this censoring into practise requires us to provide five distributions: 1)
a distribution F abs for the time between query-sessions, which following [75]
we will refer to as the absence time, 2) a distribution for the cookie lifetime
(F cookie), 3) a distribution for the user lifetime (F user), 4) the device transition
matrix P , and 5) the initial device probability F device.

For the absence time distribution, we use some results from [75]. Although
Dupret and Lalmas [75] fitted a Cox survival model to user absence data in
order to estimate user lifetimes, we refitted the data mentioned in the paper
with a different model for two reasons. First, there is ambiguity in the method
used to model absence time. The authors fit a Cox survival model with one
covariate. As the (log-)likelihood of a Cox survival model omits the estimation
of the base hazard, the method for estimating this base hazard should be pro-
vided (e.g., the Breslow estimator). However, the paper does not report which
method was used to fit the baseline hazard. Second, results from Dasgupta
et al. [55] on cookie churn suggests that, when taking into account longer pe-
riods than 7 days, absence time has a fat-tailed distribution. We found that
a Pareto-I with scale parameter m = 1 and shape α = 0.11 seems to fit the
data from [75] approximately well. This distribution was therefore used to
model F abs. To allow for absence times smaller than 1 (but still positive), we

64

subtracted one from all drawn lifetimes.

To model the cookie lifetime, we used the results from [55], who find that
a hyper-exponential distribution with one over the rate being equal to 50
seconds (with probability .06), 25 minutes (with probability .07), 14 hours
(with probability .07), 15 days (with probability .18), and 337 days (with
probability .62), fits reasonably well. Here, cookie lifetime is defined as the
time difference between the first and last observed action from a single cookie.
We consider time at a minute scale, and therefore rounded up the first phase
(50 seconds) to one minute.

The user lifetime is obtained by sampling from N cookie lifetime distributions,
where N itself is drawn from a geometric distribution with parameter ρ. As the
cookie lifetime distribution is modelled as a hyper-exponential, we will refer to
this distribution as a repeated hyper-exponential distribution. Although we
sample from the cookie life time distribution, the user lifetime is independent
from the cookie lifetimes: they only share the underlying hyper-exponential
distribution, not the realizations of that distribution.

To model device transition matrix P , we use the results from [176], who study
device transitions between four devices: a PC, tablet, smartphone and game
console. We adopted the transition probabilities found in this paper, where
we dropped the game console as the found transition probabilities from and to
this device were marginal. After dropping the game console, the probabilities
were normalized to obtain transition matrix P . The initial device probability
distribution F device is also obtained using the results from [176], and is modeled
as a multinomial distribution with parameter π = (π1, π2, π3); π1, π2, π3 being
the probability of the PC (Dev. 1), tablet (Dev. 2), and smartphone (Dev.
3) being the first device respectively. The normalized initial and transition
probabilities from [176] are given in Table 4.1

Table 4.1: Initial device and device transition probabilities adopted from [176]

π Dev. 1 Dev. 2 Dev 3
Dev. 1 .64 .9874 .0042 .0084
Dev. 2 .11 .00256 .9697 .0046
Dev. 3 .25 .029 .0018 .9773

65

Summary of the simulation procedure

The entire simulation procedure is given in Algorithms 3, 4, and 5. Algorithm
3 describes how user preferences are obtained and how the overall popularity is
determined, whereas Algorithms 4 and 5 (see Section 4.6) describe how clicks
and cookie churn are simulated over a set of users.

For convenience, we have written the set of warm-up users as Uwarm-up, φ̂ =

(φ̂1, . . . , φ̂V), and yi = (y
(i)
1 , . . . , y

(i)
T). The location and scale parameter of

the Pareto-I distribution are written as m and α, whereas the rate and rate
probability of the hyper-exponential distribution are given by the vectors λ
and p. Last, let Id be a 3× 3 matrix where the d-th column contains all ones,
whereas the rest of the matrix contains all zeros.

The simulation iterates over all users, where for each user new query-sessions
are simulated until the user lifetime has elapsed. For each user, first the initial
device is drawn, along with a cookie lifetime for that user on that device, and
the total user lifetime. Next, query-sessions are simulated for each user in four
steps. First, Si is (iteratively) drawn using the overall item popularity φ̂, and
we simulate clicks using the SCZM model described in Section 4.3.1, which
are stored in dataset D. Second, we simulate the time until the next session.
Third, the device of the next session is determined. Fourth, we check whether
the last cookie on the new device has churned. If so, a new cookie is created
with a corresponding new cookie lifetime.

Although Algorithm 4 assumes all users arrive at t = 0, we shift all times
after the simulation to obtain click behavior spread out over time. Here we
assume a Poisson arrival process with rate γ. I.e., the first query-session of
user u starts some exponentially distributed time after the initial query-session
of user u−1. Note that these inter-first session times only depend on the time
of the first session of the previous user, not on any other subsequent behavior
of that user.

4.3.2 Session clustering

(H)DBSCAN*

Hierarchical clustering using Minimum Spanning Trees (MST) Be-
fore we discuss the adjustment made to the HDBSCAN* and DBSCAN* algo-
rithms, we will first briefly describe the two algorithms. We first discuss the
overlapping part in both algorithms, after which we discuss their differences.
Following the terminology by [31, 32] and [171], let X = {X1, . . . , Xn} be a

66

Algorithm 3: User simulation procedure
inputs : Users U , items V, warm-up users Uwarm-up, device

probabilities π and P , F cookie, parameters p and λ, user
lifetime geometric phases parameter ρ, and attraction and
satisfaction parameters φ(R) and φ(S)

output: Simulation realization D
1 Draw η

(u)
1 , η

(u)
2 , ψ

(v)
1 , ψ

(v)
2 i.i.d. from a standard normal distribution

for all v ∈ V and u ∈ U ;
2 Compute similarities ωu,v according to (4.9);
3 Compute the probability of attraction and satisfaction, using (4.7);
4 Set φ̂v ← 1 for all v ∈ V;
5 Dwarm-up ←

simulate_clicks(Uwarm-up,V, φ̂,π, P,p,λ, ρ,φ(R),φ(S));
6 Recompute φ̂ according to (4.10);
7 D ← simulate_clicks(U \ Uwarm-up,V, φ̂,π, P,p,λ, ρ,φ(R),φ(S));
8 return D;

set of data points, let κk(Xi) be the distance from point Xi to its k-th nearest
neighbor (for some given value of k ∈ N), and let δ(Xi, Xi′) be some distance
measure between points Xi and Xi′ . Based on this original distance mea-
sure, DBSCAN* considers an alternative distance measure, which is named
the mutual reachability distance, and is defined as follows:

δmreach
k (Xi, Xi′) =

{
max{κk(Xi), κk(Xi′), δ(Xi, Xi′)} if Xi 6= Xi′

0 if Xi = Xi′
.

(4.12)
Although DBSCAN* does not specify the exact distance measure δ, we will
(like in Section 4.3.1) assume this is Euclidean distance. The main motivation
for introducing this mutual reachability distance is to better identify different
clusters with high density of arbitrary shape, as the measure tends to push
different high density clusters further apart.

Given the mutual reachability distance, (H)DBSCAN* represents each data
point as a node in a complete weighted graph G, where the weights are simply
the mutual reachability distances between data pairs. Using G, the algorithm
first computes a minimum spanning tree (MST), which allows for fast iden-
tification of clusters. The MST is also used to approximate distances: the
distance between two non-adjacent points Xi and Xi′ in the MST can be ap-

67

proximated by the path length Xi → Xi′ in the MST. At the same time, this
distance is a lower bound on the actual distance: otherwise, Xi → Xi′ would
be adjacent in the MST.

From this MST, one can build a dendogram of the data points in an agglom-
erative manner. First, (H)DBSCAN* assigns each data point X1, . . . , Xn to
separate clusters B0

1, . . . ,B0
n. Here the superscript is used to indicate the hi-

erarchy level of the cluster, which at this stage is zero. Second, it iterates
through the edges in G, increasing in terms of their weights. For some edge
(i, i

′
) having the smallest edge weight, it finds the two clusters with the highest

hierarchy levels hmax
i and hmax

i′
, to which i and i

′
are assigned to respectively.

Next, it and creates a new cluster B
max{hmax

i ,hmax

i
′ }+1

j , which includes all data
points included in the highest hierarchy clusters to which Xi and X

′

i were
previously assigned to. If this process is repeated for all edges in G, the last
edge will create a cluster containing all data, which occurs at level H.

DBSCAN* The construction of the dendogram occurs both in DBSCAN*
and HDBSCAN* in the same manner. However, as both methods wish two
find non-overlapping clusters, the two methods split ways from there. In DB-
SCAN*, one would take some value ε ∈ R+, and remove all cluster merges
in the dendogram that were merged with a weight strictly greater than the
chosen maximum distance ε. This would lead to a set of disconnected binary
trees T , and a set of singleton points N . The singleton points are points for
which their k-th nearest neighbor is already at a further distance than ε, and
these points are consequently labeled as noise. All data points in one tree
τ ∈ T are labeled as one cluster.

HDBSCAN* The underlying assumption of cutting the dendogram at level
ε, is that all clusters have (approximately) the same density. This density is
in HDBSCAN* approximated by θ = 1/ε, i.e., close points imply high density.
HDBSCAN* allows for different cut-off levels of ε, or similarly of θ, where the
optimal cut-off level for some cluster is determined via the notion of relative
excess of mass, which we will introduce in a moment.

More precisely, let M be some given minimum cluster size. To somewhat
simplify notation, we let index j refer to any cluster, irrespectively of hierarchy
h, such that h can be dropped. HDBSCAN* first creates a condensed tree from
the dendogram in the following way. It starts at the root of the dendogram,
having label j0, and considers its children. These were merged at some density
θj,j′ , merging two clusters with labels j and j

′
. It then considers three options:

68

1) if both children have less than M points, all points in Bj and Bj′ “fall-out"
of the cluster at density θj,j′ , implying that for densities greater than θj,j′ all
points in Bj and Bj′ are labeled as noise. 2) If only one cluster Bj has less
thanM points, all points in Bj fall-out at density θj,j′ , while the parent cluster
label (j0) is now continued for all observations in Bj′ . I.e., we replace label j

′

by j0, and as a result the exact cluster j0 now refers to depends on whether
we pick a density larger or smaller than θj,j′ . 3) If both children have more
than M observations, clusters Bj and Bj′ keep their labels j and j

′
. I.e., label

j0 is not continued, and clusters Bj and Bj′ are considered separate clusters
for densities larger than θj,j′ . After both children have been relabeled, this
process is repeated using these new labels until all nodes have been relabeled.

The resulting condensed tree is essentially still the same as the original den-
dogram, but with different labels. I.e., by continuing the parent (option
2), some labels now may refer to different clusters, dependent on density θ.
Let {1, . . . ,m} be the resulting set of labels from relabeling. For each label
j ∈ {1, . . . ,m}, let Bj be the set of observations labeled j at the minimum
density for which j exists. Furthermore, let θmax

j (Xi) and θmin
j (Xi) be the

densities at which observation Xi falls off cluster j and the density at which
Xi first occurs in cluster j respectively. Note that θmin

j (Xi) is either zero (when
j is the label continued from the root node), or the density at which cluster j
splits off from its parent, hence it has the same value for all Xi ∈ Bj .

Clusters {B1, . . . ,Bm} may still be overlapping. To find non-overlapping clus-
ters, HDBSCAN* introduces the relative excess of mass of cluster j as σ(j),
which is defined by:

σ(j) =
∑
Xi∈Bj

[
θmax
j (Xi)− θmin

j (Xi)
]
. (4.13)

The relative excess of mass has an intuitive argument for clustering. Large
values for σ(j) imply that when increasing the density, the cluster remains more
or less intact (apart from some noise points splitting off at higher densities).
As a result θmax

j (Xi)−θmin
j (Xi) becomes large. I.e., the relative excess of mass

can be used as a measure of cluster quality. Hence, HDBSCAN* optimizes the
sum of relative excess of mass over a subset of clusters {B1, . . . ,Bm} such that
this subset is non-overlapping.

69

Introducing maximum cluster sizes to HDBSCAN* and DBSCAN*

To return to the problem at hand: identifying small session clusters from the
set of all sessions that may be originating from the same user, HDBSCAN*
and DBSCAN* can obviously be used for this purpose. Apart from the earlier
discussed benefit of speed by clustering via MST, incorporating noise points
would also intuitively make sense in identifying potential users from sessions:
we would expect that quite a large (though unknown) percentage of all sessions
might still be from users only initiating a single session.

By tweaking parameters k, (the k-th nearest neighbor in nearest neighbor dis-
tance κk), ε (dendogram cut-off point in case of DBSCAN*), andM (minimum
number of points before a cluster is considered noise in HDBSCAN*) one can
obtain session clusters that obey a maximum cluster size β ∈ N. However,
some early experiments with DBSCAN* and HDBSCAN* showed that the re-
sulting clusters tended to either very large clusters, or labeled (almost) every
point as noise. For that reason, we chose to adjust both algorithms, in order
to obtain more small clusters having a size smaller than β.

To impose the clusters to be more fine grained, we impose a restriction on the
maximum cluster size of the clusters found by (H)DBSCAN*. We do so in three
different ways: max-size DBSCAN* (MS-DBSCAN*) imposes this restriction
on DBSCAN*, whereas MS-HDBSCAN*− and MS-HDBSCAN*+ are two
ways to impose the restriction on HDBSCAN*.

First we consider MS-DBSCAN*. This algorithm is only a slight adaptation
to the DBSCAN* algorithm described in Section 4.3.2. Given the binary trees
T , obtained by removing all nodes and edges in the dendogram above distance
ε, we further remove all cluster nodes j for which |Bj | > β. Doing so results in
two new sets: Ñ and T̃ , again representing singleton points that we assume
to be noise, and all points in a tree τ ∈ T̃ receive the same cluster.

Second are the adaptations of HDBSCAN*. The first steps of these two adap-
tations are the same. First, all clusters Bj ∈ {B1, . . . ,Bm} having |Bj | > β are
removed from the dendogram. This, like in DBSCAN*, gives two sets: noise
points N and trees T . Second, for each sub-tree τ ∈ T , we again optimize
the the total relative excess of mass subject to non-overlapping clusters. The
difference between MS-HDBSCAN*− and MS-HDBSCAN*+ arises when a
leaf node of the condensed tree (that is, a label that does not split at some
larger density into two new labels, though noise points may split off) of some
condensed sub-tree τ is in the set of optimal non-overlapping clusters. In case
of MS-HDBSCAN*−, all observations in Bj are given the same label, whereas

70

in case of MS-HDBSCAN*+, these are considered noise.

Session cluster re-evaluation

As one might have noticed, so far we have not used any information from
the cookies. I.e., knowing which sessions have the same cookie could provide
valuable information about the underlying user. In particular, we wish to train
a model that can function as an alternative to standard distance measures δ,
such as Euclidean or Manhattan distance, which we then again can plug into
the adapted (H)DBSCAN* algorithms described in Section 4.3.2.

Obtaining session clusters with re-evaluation is done as follows. Assume we
have a trained classifier f̂(Xi, Xi′), which returns the probability of Xi and
Xi′ originating from the same user. First, like in [190], we find for each point
Xi the K nearest neighbors, which gives us a set X of all nearest neighbor
session pairs. Second, we compute − log(f̂(Xi, Xi′)) for all (Xi, Xi′) ∈ X , and
fill this into a (sparse) n× n distance matrix W . For all pairs (Xi, Xi′) /∈ X ,
we assume the distance is some large value δmax, which allows us to store
W efficiently, and greatly speeds-up computations compared to evaluating all
pairwise same user probabilities. Distance matrixW can subsequently be used
as distance measure δ in the algorithms discussed in Section 4.3.2 to obtain
new session clusters.

To train classifier f̂ , we first cluster a training set according to one of the
models discussed in Section 4.3.2, using Euclidean distance for δ. Second,
for each cluster we add all unique session pairs into some training set Xclust.
Next, we start using the observed cookies: we treat each cookie as a cluster
and determine all session pairs in these cookie clusters, where this set of pairs
is denoted by Xcookie. To determine for each session pair (Xi, Xi′) the correct
label, we use the information from the observed cookie. If Xi and Xi′ have
the same observed cookie, we set yi,i′ = 1, while yi,i′ = 0 otherwise. The final
training set Xtrain is obtained by undersampling from Xclust ∪ Xcookie.

Note that obtaining negative labeled training pairs from a point its K near-
est neighbors follows the assumption that these are indeed more likely to be
negatives than positives. If this assumption holds, sampling negatives from
the nearest neighbors would intuitively help the classifier to learn more sub-
tle patterns. I.e., the K nearest neighbors are close in terms of the common
distance measure, but not according to the classifier.

71

DBSCAN* with random clusters

To benchmark the clustering approaches just discussed, we consider the fol-
lowing benchmark. We first cluster the sessions using the ordinary DBSCAN*
algorithm, in which way we obtain initial clusters B0

1, . . . ,B0
m. Next, for each

cluster Bhj (h ∈ N, with initially h = 0), if |Bhj | > β, we iteratively select
min{sj,h, |Bhj |, β} points uniformly at random from Bj to form a new cluster
B̃, and update Bh+1

j ← Bhj \ B̃. Here, sj,h is drawn from a geometric distribu-
tion with p = 0.5. This process continues until for all j ∈ {1, . . . ,m}: |Bhj | ≤ β
for some h, at which the remaining points in Bhj are labeled as one cluster.

Intuitively, we selected this benchmark as it captures the higher level hierarchy
clustering of DBSCAN*, but not the low level clusters (as these clusters are
picked at random). Therefore, comparing the previous methods with this
random clustering approach allows us to assess whether the smaller size clusters
reveal more information than the larger ones.

4.3.3 Experimental setup

Simulation parameters

Our experimental design consist of two steps. First, we consider a simulation
base case on which we evaluate the clustering approaches discussed in Section
4.3.2. In this base case, users’ first query arrival follows a Poisson process
with rate γ = 0.2 (minutes), after which subsequent behavior over time of
a particular user is modeled according to F abs, F cookie, F user, F device, P ,
and π, of which the parameters were already given in Section 4.3.1. We used
U = 20, 000 users with Uwarm-up = 2, 000 (10%). Furthermore, we removed the
first 250 sessions (not part of the first Uwarm-up users, who were only used to
estimate the overall item popularity), as these would likely all be first sessions
from new arriving users, and therefore including them may lead to a bias in the
data. Likewise, we removed all observations after 43, 200 minutes (30 days)
to avoid the opposite bias: not having any new users. Users could pick from
V = 100 items, and we choose as maximum list size T = 10.

For parameters that could not be adopted from the literature, we tried several
parameter values and looked at three characteristics. First, we considered
whether the click probability is decreasing in list position. Second, whether
the attraction/satisfaction is centered around 0.5, with a standard deviation of
approximately 0.1 to 0.2. Third, whether all sessions are somewhat spread out
over time. This lead us to choosing users’ preference for nearby items q = 1,

72

user lifetime phases geometric parameter ρ = 0.5, and salience parameters
ν(R) = ν(S) = 5. Figure 4.1 shows the three base case characteristics for the
resulting simulated base case used in further inference. In the second step of
the experimental design, we made adjustments to the latter parameters, that
is, those not adapted from the literature. These adjustments will be discussed
in Section 4.4.2.

Features and MS-(H)DBSCAN* hyper-parameter settings

The simulated dataset was split into a training and test set according to a
70/30 split over the users. I.e., users always are entirely in the training set,
or entirely in the test set. For each session, we used the session’s start time,
observed session count (as observed by the cookie), number of clicks, and
whether the session’s SERP has at least one click as features. Furthermore, to
obtain a vector representation of the items and interactions with the SERP,
we first computed a bin-count table. This table contains per item the total
number of clicks, skips (no click), and the log-odds ratio between clicks and
skips over 30 percent of all sessions, which combined were used as item vector
representations.

Next, for each session i, we concatenated all item vectors ψv, v ∈ Si, in order
of their position, resulting in some vector ai with 3T elements. Additionally,
we created four more session vectors. The first of these vectors is obtained
by multiplying ai with a vector containing ones at those positions where a
click occurred, whereas for the second vector, ai is multiplied with a vector
containing ones at positions where the item was skipped (=not clicked). The
third vector is obtained by multiplying ai with a vector containing ones at
the last clicked position. To obtain the fourth vector, ai is multiplied with a
vector of list positions for each item. In all cases, the vector multiplication is
element-wise. Next, all five session vectors were concatenated to obtain one
session vector representation.

The resulting concatenated session vector was further treated by computing all
second order polynomial features, after which we normalized and applied the
Yeo-Johnson [242] power scaler to make the distribution of each feature more
Gaussian-like. We reduced the vector’s dimension using a principle component
analysis using seven principle components, the latter was chosen using the
elbow method.

For each method, we experimented with k ∈ {1, 3, 5} (here k as in κk, the
distance to the k-th nearest neighbor). For DBSCAN*-like algorithms, we

73

0

200

400

600

800

0 10 20 30
Day

Se
ss
io
ns

(a) Sessions per day

0.4

0.6

0.8

1.0

0 25 50 75 100
IAO

A
tt
ra
ct
io
n

(b) Mean attraction and the area between
0.05 and 0.95 quantile over the users’ item
attraction order (IAO)

0.0

0.2

0.4

1 2 3 4 5 6 7 8 9 10
List position

M
ea
n
cl
ic
k
ra
te

(c) Mean click rate per list position

Figure 4.1: Summary of base case simulation

74

tried ε ∈
{(
qmax (qmin/qmax)

`/N
) ∣∣` ∈ {1, . . . , N}}, with N = 9 and qmin, qmax

the minimum and maximum Euclidean distance, obtained by computing all
pair-wise distances over 1,000 sampled session vectors. For HDBSCAN*-type
algorithms, we set minimum cluster size M = 2.

For re-evaluation models, we took the approach already explained in Sec-
tion 4.3.2. To train classifier f̂(ai,ai′), we first run MS-DBSCAN* with the
best found values for k and ε from earlier validation of MS-DBSCAN* on
the training set to, together with the cookie clusters, obtain Xtrain. Next,
we computed the Manhattan, Euclidean, and infinity norm between ai and
ai′ , (i, i

′
) ∈ Xtrain that were used as feature vector to train a logistic re-

gression model. We selected for each point the K = 1, 000 nearest neigh-
bors to evaluate classifier f̂ on. All non-evaluated pairs received distance
δmax = − log

(
10−6

)
. Next, the MS-(H)DBSCAN algorithms were evalu-

ated using the new distance matrix W , where we experimented again with
k ∈ {1, 3, 5}, and ε ∈

{
qmin + `(qmax−qmin)

Nre-eval

∣∣` ∈ {1, . . . , Nre-eval}, Nre-eval = 5
}
.

All algorithms excluding HDBSCAN* (i.e., including DBSCAN*) were trained
using the sklearn package in Python [187] (version 0.22.1). sklearn was also
used to compute error scores (see Section 4.3.3). We used the hdbscan package
[172] (version 0.8.26) to obtain the dendogram and condensed tree, based on
which we could impose the maximum cluster size in the way described in
Section 4.3.2. For both packages, the default parameters were used unless
indicated otherwise.

Error metrics

We considered error metrics from two perspectives. First, we consider error
measures with respect to overall website performance. More precisely, given
some final clustering {Bfinal1 , . . . ,Bfinalm }, the following error measures are com-
puted. 1) We compute the APE (absolute percentage error) between the real
and estimated number of unique users (the latter being equal to m), 2) the
Kullback-Leibler divergence (KL-divergence) between the real and estimated
user session count distribution (the latter being equal to the cluster size dis-
tribution), and 3) the KL-divergence between the real and estimated user con-
version distribution. Here, user conversion is defined as the fraction of items
clicked per user over all shown (but not necessarily evaluated) items.

The second perspective is on the level of the clusters themselves, where we
consider two error measures. To determine the quality of the clusters, we
computed the adjusted Rand index (ARI) [108] between computed and real ses-

75

sion clusters. Besides ARI, we also measure how well the model distinguishes
whether each new session originates from an existing or already observed user,
which is measured using the accuracy score.

Since ARI measures the overlap between the computed and real session clus-
ters, we consider ARI to be our main error measure, using the other error
measures to study possible side-effects when optimizing for ARI.

4.4 Results

4.4.1 Results on base simulation case
Table 4.2 shows how the different models perform in terms of several error
measures on both the training and test set. For each method, the shown
results are the best results obtained under the different hyper parameters tried
for that method under that dataset. I.e., in theory the hyper parameters might
be slightly different between training and test, though in practice we found this
was rarely the case.

The OBS model in the table are the scores one would obtain if the observed
cookies would be used as clusters. Models using the classifier as distance mea-
sure are indicated using subscript p. What immediately becomes apparent is
that compared to these observed cookie clusters, all methods perform consid-
erably worse. Hence, in the scenario we consider: a single query where the true
location

(
η

(u)
1 , η

(u)
2

)
is only revealed by clicked and skipped item locations, our

approaches do not come near what one would obtain if one would simply take
the observed cookies.

However, the scores do reveal some interesting patterns. First, approaches
using a probabilistic distance measure seem to overfit the data: they per-
form relatively well (compared to the other approaches) on various measures
on the training set, but on the test set these results are mitigated. Here,
MS-DBSCAN* seems to work best when considering multiple error mea-
sures. Looking at the results from different hyper-parameter settings for
MS-DBSCAN* (Table 4.3), we observe that selecting k = 1 performed best.
Furthermore, due to our maximum size constraint the clusters did not alter
for ` ≥ 4 (ε ≥ 6.33).

Furthermore, methods without a probabilistic distance measure do outper-
form the DBSCAN*-RAND method on most measures. I.e., they perform
better at picking sessions originating from the same user from a given cluster

76

Bj produced by DBSCAN*, than if we would pick session pairs at random.
Although it is difficult to draw a firm conclusion, these findings might be an
indication that the same user signal we try to infer from the click data is some-
what weak: if our methods would not pick up a signal at all, we would expect
them to have the same result as the DBSCAN*-RAND method.

Table 4.2: Results on the base case

Dataset ARI KL-div. KL-div APE unique New user
Model session count conversion user accuracy
MS-DBSCAN* train 0.0012 0.55 0.13 15 0.56
MS-DBSCAN*p train 0.14 0.74 0.092 77 0.5
DBSCAN*-RAND train 0.0002 1 0.096 0.011 0.42
MS-HDBSCAN*+ train 0.0007 0.75 0.15 10 0.52
MS-HDBSCAN*− train 0.0007 0.75 0.15 10 0.52
MS-HDBSCAN*+p train 0.092 0.9 0.11 0.011 0.46

MS-HDBSCAN*−p train 0.1 0.9 0.11 0.011 0.46
OBS train 0.91 0.017 0.0032 15 0.95
MS-DBSCAN* test 0.0022 0.11 0.0026 60 0.56
MS-DBSCAN*p test 0.0015 1.4 0.13 6.8 0.4
DBSCAN*-RAND test 0.0004 0.32 0.015 40 0.5
MS-HDBSCAN*+ test 0.002 0.16 0.0042 53 0.55
MS-HDBSCAN*− test 0.002 0.16 0.0042 53 0.55
MS-HDBSCAN*+p test 0.0015 1.4 0.13 7.2 0.4

MS-HDBSCAN*−p test 0.0015 1.4 0.13 7.2 0.4
OBS test 0.91 0.1 0.0076 51 0.95

Table 4.3: ARI of MS-DBSCAN* on the training set of the base case

k

` ε 1 3 5
1 0.013 < 10−4 < 10−4 < 10−4

2 3.44 0.0008 0.0004 0.0001
3 4.84 0.0011 0.0005 0.0004
4 6.33 0.0013 0.0006 0.0004
5 8.20 0.0013 0.0006 0.0004
6 10.76 0.0013 0.0006 0.0004
7 14.57 0.0013 0.0006 0.0004
8 20.94 0.0013 0.0006 0.0004
9 30.45 0.0013 0.0006 0.0004

77

Table 4.4: Simulation scenarios

Variable Values
User distance sensitivity
(user_dist_sens_[q])

{1, 2, 5, 10, 25, 50}

Number of items
(item_count_[V])

{10, 100}

Lifetime phases
(lifetime_phases_[ρ])

{.15, .29, .43, .5, .57, .71, .85}

Salience
(salience_[φ]_[φ

′
])

∈ {1, 2, 5, 10}2

4.4.2 Results on multiple simulation scenarios
In order to judge the sensitivity of our findings on the parameter settings of
the simulation model, we permuted the simulation settings to see if this would
alter our results. The different settings are indicated in Table 4.4. Whenever
one parameter was permuted, the rest of the parameters remained fixed at
their base case value.

As re-running all models on all simulation settings would be computationally
rather expensive, we only re-evaluated the best performing models on the
simulation cases. Since in our base case we found that the parameters k =

1, ε =
(
qmax (qmin/qmax)

2/3
)
worked reasonably well, these parameters were

used for MS-DBSCAN* and DBSCAN*-RAND. The maximum cluster size
remained the same as in the base case.

Figure 4.2 shows how the models perform over the different simulation settings
in terms of ARI, which is our main response variable of interest. The figure sug-
gests that all cluster models do stochastically dominate DBSCAN*-RAND.
Furthermore, MS-DBSCAN* seems to outperform the other clustering meth-
ods in terms of ARI. As assumptions like homogeneity of variance or normality
do not hold in this case, we used a Kruskall-Wallis test, which rejects in this
case that all median ARI scores over the different methods are the same (using
significance level α = .01, p < 10−4). Pairwise (between MS-DBSCAN* and
all other methods) one-sided pairwise Wilcoxon signed rank tests also indicate
MS-DBSCAN* performed significantly better than the other methods (all
p-values are smaller than 10−4).

Table 4.7 shows how MS-DBSCAN* performs on the various simulation cases.

78

The rows in boldface have ARI ≥ 0.0025. The results suggest that when
strengthening the signal, that is increasing click probabilities, leads to some
improvement in ARI. The most obvious way to do so is by decreasing the
number of items (which, as we use bin counting, ensures each item has sufficient
data for bin counting). However, these improvements remain small.

Table 4.5 shows how the different error measures correlate, using the error
scores from all clustering algorithms on the various simulation cases. ARI
seems to be weakly correlated with most other error measures, with the sign
being in the desired direction (i.e., decrease in KL-divergence for both session
count and conversion, but an increase in the new user accuracy). However,
both ARI and the new user accuracy show a positive correlation with the
percentage error in the number of unique users.

DBSCAN*-RAND

MS-DBSCAN*

MS-HDBSCAN*−

MS-HDBSCAN*+

0.000 0.001 0.002 0.003
ARI

Figure 4.2: Scores over all simulations

4.5 Conclusion and discussion

In this chapter, we presented a homogeneous query click simulation model,
and illustrated its usage to the problem of uncovering users from their web
sessions. The simulation model is composed of several models from which
previous literature suggests that these models work well in explaining typi-
cal patterns observed in click data, while remaining relatively simple. Such
patterns include the position bias, cookie censoring, and users’ utility over
multiple products. Furthermore, we illustrated the simulation model on the
problem of (partially observed) session clustering, that is, identifying unique

79

Table 4.5: Correlation matrix error measures

ARI KL-div. KL-div APE unique New user
conversion session count user accuracy

ARI 1.00
KL-div. -0.15 1.00
conversion
KL-div. -0.16 0.60 1.00
session count
APE 0.38 -0.52 -0.92 1.00
unique user
New user 0.39 -0.59 -0.85 0.95 1.00
accuracy

users from their query-sessions. To solve the latter problem, we tested several
mutations of (H)DBSCAN*, where these mutations differ from HDBSCAN*
or DBSCAN* as they allow for incorporating a maximum cluster size. Fur-
thermore, we consider both a Euclidean and probabilistic distance measure
to determine whether a pair of sessions originated from the same user. The
probabilistic distance measure was obtained using a pre-trained classification
model.

Given a simulated dataset, we considered solving the problem of uncovering
users from their web sessions by using (H)DSCAN*-type clustering algorithms.
Comparing (H)DSCAN*-type algorithms with clusters one would obtain by
using cookies, we found the accuracy of using cookies largely outperformed
that of not using or partially using cookie data. This considerable difference
seems to be due to two reasons. 1) The simulated censored cookies turned
out to be rather accurate, implying that, assuming the parameters used for
cookie censoring adapted from previous literature are accurate, censoring in
cookie data does not impose that much of a problem in accurately measuring
the metrics studied in this chapter. These metrics being the number of unique
users, user sessions count distribution, user conversion distribution, the quality
of session clusters (in terms of adjusted Rand index (ARI)), and estimating
whether the next session originates from a new or existing user. 2) As we only
consider a homogeneous query, the users’ preferences are only revealed from
the items users clicked, a signal the various (H)DBSCAN*-type algorithms find
difficult to detect. Strengthening this signal, e.g., by increasing the number of
clicks, leads to a small but significant improvement in ARI.

80

Other interesting observations include the difference between using Euclidean
distance and a probability distance measure in the (H)DBSCAN*-type algo-
rithms, the latter being obtained from training a classifier on detecting whether
session pairs originate from the same user. The results show that the prob-
abilistic classifier tends to overfit. Where some methods using probabilistic
distance measures performed quite reasonably on the training set, they were
outperformed by methods using Euclidean distance on the test set.

By studying the correlations between the various error metrics considered in
this chapter, we observe that some error measures show contradictory correla-
tions. In particular, the positive correlation between cluster ARI and average
percentage error in the number of unique users (.38), and between the accu-
racy in estimating whether the next session originates from a new user and
the new user average percentage error (.95), indicate that optimizing for one
of these error measures may lead to decreased performance in the other.

Although our findings suggest that the practicality of session clustering from
single query click data is limited, the usage of the simulation model did al-
low for studying the sensitivity of the clustering algorithms on different click
behavior, something that would not easily have been possible with real click
data. It also allowed us to study the effects of user censoring caused by cookie
churn or the usage of multiple devices. This showed that if we adopt models
for cookie churn behavior found in the literature, this censoring only has a
small effect on the accuracy of the website metrics discussed in this chapter,
with an exception for estimating the number of unique users.

Given our findings, a number of questions remain. First, it would be in-
teresting to extend the simulation model to allow for multiple queries. As
the solutions to the (multi-query) CIKM 2016 and ICDM 2015 cross-device
matching competitions were quite successful, a logical hypothesis would be
that incorporating multiple queries into the simulation model would improve
the results obtained from (H)DBSCAN*-type algorithms. Apart from multiple
queries, it could also be interesting to consider alternative models for repre-
senting user-item relevance, as the Fleder-Hosanagar model . I.e., modeling
users and items using On the other hand, more diversity also causes clicks to
be more spread across items, which as we have seen, may lead to decreasing
clustering performance.

Second, in this study, we only used a logistic regression model to approximate
the probability of two sessions originating from the same user. Given the
limited success of this approach so far, it would be interesting to consider other
approaches. As the limited results seem to be due to overfitting, including

81

regularization or using bagging could lead to better results.

Third, there is still limited knowledge on how cookie censoring occurs. Cur-
rently, multiple models exist in the literature, but most models only consider a
specific type of censoring (e.g., only censoring by cross-device usage or cookie
churn), from which one cannot infer how these different types of censoring
interact. Also, as discussed in Section 4.3.1, literature providing parametric
models for cookie churn, user lifetime and absence time (the time between
two sessions) seems to be contradictory in terms of tail probabilities. Hence,
click simulation models that incorporate cookie censoring would benefit from
studies taking a more holistic view on cookie censoring.

4.6 Simulation procedure

Table 4.6: List of notation

Variable Interpretation

{1, . . . , n} Set of query-sessions, indexed by i.
Si = {1, . . . , T} Set of items in SERP of session i, indexed by t.
V = {1, . . . , V } Set of all items, indexed by v.
U = {1, . . . , U} Set of all users, indexed by u.
ri(t) Item v ∈ V at position t in the SERP of query-

session i.
r−1
i (v) Position of item v in the SERP of query-session

i, zero if v /∈ Si.
rmax
i Largest position of a clicked item v ∈ Si, zero if

no items were clicked.
R

(i)
v ; φ(R)

u,v Attraction of user i for item v, with P(R
(i)
v = 1) =

φ
(R)
u,v , given v ∈ Si.

S
(i)
v ; φ(S)

u,v Satisfaction of user i for item v, with P(S
(i)
v =

1) = φ
(S)
u,v , given v ∈ Si.

E
(i)
t Whether item at position t in SERP i was evalu-

ated.
y

(i)
t Whether item at position t in SERP i was clicked.
ηu Vector denoting the position of an user u in the

user-item space.
ψv Vector denoting the position of an item v in the

user-item space.

82

Table 4.6 – Continued
Variable Interpretation

ν(R), ν(S) Salience parameters for attraction and satisfac-
tion.

q Users’ preference for nearby items.
ωu,v Distance between user u and item v in the user-

item space.
φ̂v Overall estimated popularity of item v ∈ V.
F cookie Cookie lifetime distribution (hyper-exponential)

with parameters λ and p.
T cookie
u,o,d ∼ F cookie Random variable denoting the cookie lifetime for

the o-th cookie of user u on device d.
F abs User absence distribution (Pareto-I) with param-

eters α (shape) and m (scale).
T abs
i,u ∼ F abs Random variable denoting the time between the

i-th and i+ 1-th session of user u.
F user User lifetime distribution (sum of Nu hyper-

exponentials) with parameters λ, p and ρ (ge-
ometric parameter for Nu).

T user
u ∼ F user Random variable denoting the user lifetime of

user u.
P , π Device transition matrix and initial device prob-

abilities.

83

Algorithm 4: Simulate_clicks
1 Simulate_clicks (U , V, φ̂,π, P , p, λ, ρ, φ(R), φ(S))

inputs : Users U , items V, item popularity estimates φ̂, device probabilities π
and P , F cookie parameters p and λ, user lifetime geometric phases
parameter ρ, attraction and satisfaction parameters φ(R) and φ(S)

output: Simulation realization D
2

3 for u ∈ U do
/* Draw initial device and cookie lifetime, and draw the user’s

lifetime */
4 D ← dic(); i← 1; o← 1; t← 0;
5 Draw device d from Multinom(π); D[d]← o;
6 Draw T cookie

u,o,d from HyperExp(λ,p); T user
u from RepHyperExp(ρ,λ,p);

7

/* Simulate new query-sessions while the user’s lifetime has not
elapsed */

8 while t ≤ T user
u do

9 D ← Get_session_clicks(v, i,V,φ(R),φ(S));
/* 2) Draw the time until the next session and update t

accordingly */
10 Draw T abs

i,u from Pareto-I(m,α);
11 t← t+ T abs

i,u ; i← i+ 1;
/* 3) Update the device for the next session */

12 Draw d
′
from MultiNom(IdP);

13 if d
′ 6= d then

14 if not D.exists(d) then
15 o← o+ 1;
16 Draw T cookie

u,o,d from HyperExp(λ,p);
17 T cookie

u,o,d ← T cookie
u,o,d + t;

18 else
19 o← D[d

′
];

20 d← d
′
;

/* 4) Simulate cookie churn */
21 if t > T cookie

u,o,d then
22 o← o+ 1;
23 Draw T cookie

u,o,d from HyperExp(λ,p);
24 T cookie

u,o,d ← T cookie
u,o,d + t;

25 D[d]← o;

26 return D

84

Algorithm 5: Get_session_clicks
1 Get_session_clicks (v, i, V, φR, φ(S), D)

inputs : User v, session i, attraction and satisfaction parameters φ(R) and
φ(S), simulation realization D

output: Simulation realization D
2 Draw Si in its respective order by repetitively drawing from

Multinom(φ̂v/
∑

v
′∈V φ̂v′ ; v ∈ V \ Si);

3 Draw R
(i)
v , S(i)

v from Bernoulli(φ(R)
u,v) and Bernoulli(φ(S)

u,v) resp. for all
v ∈ Si;

4 Compute E(i)
t , y

(i)
t , and recompute S(i)

v according to Equations (4.1) to (4.6);
5 Append (i, u, o,Si,yi) to D;
6 return D

4.7 Results on multiple simulations

Table 4.7: Results MS-DBSCAN* on other simulation cases

Simulation case ARI KL-div. KL-div. APE New user
conversion session count unique accuracy

user
base_case 0.0021 0.0044 0.095 62 0.53

item_count_10 0.0025 0.0006 0.049 67 0.57
item_count_100 0.0015 0.0053 0.098 59 0.54

lifetime_phases_.15 0.0014 0.014 0.14 56 0.56
lifetime_phases_.29 0.0016 0.0076 0.1 59 0.55
lifetime_phases_.43 0.0021 0.008 0.11 58 0.56
lifetime_phases_.5 0.0021 0.0044 0.095 62 0.53

lifetime_phases_.57 0.0019 0.0049 0.11 61 0.55
lifetime_phases_.71 0.0019 0.0054 0.084 60 0.56

lifetime_phases_.85 0.0028 0.005 0.092 61 0.53
salience_1_1 0.0012 0.0018 0.07 64 0.58
salience_1_2 0.0022 0.0019 0.059 65 0.57
salience_1_5 0.0014 0.0015 0.085 62 0.59

salience_1_10 0.0026 < 10−4 0.084 62 0.58
salience_2_1 0.0011 0.0026 0.15 53 0.55
salience_2_2 0.002 0.0033 0.19 51 0.55

salience_2_5 0.0027 0.0005 0.12 56 0.57
salience_2_10 0.0018 < 10−4 0.094 60 0.58
salience_5_1 < 10−4 0.011 0.25 44 0.52
salience_5_2 < 10−4 0.021 0.2 51 0.53
salience_5_5 0.0021 0.0044 0.095 62 0.53

salience_5_10 0.002 < 10−4 0.079 62 0.57
salience_10_1 0.0016 0.0049 0.051 64 0.57
salience_10_2 0.0014 0.0034 0.065 66 0.57
salience_10_5 0.0018 0.0045 0.1 60 0.56

salience_10_10 0.0012 0.0001 0.042 71 0.63
user_dist_sense_1 0.0021 0.0044 0.095 62 0.53

user_dist_sens_2 0.0029 0.012 0.17 49 0.54
user_dist_sens_5 0.0033 0.0092 0.15 49 0.53

user_dist_sens_10 0.0026 0.002 0.12 57 0.56
user_dist_sens_25 0.0024 < 10−4 0.13 59 0.57

user_dist_sens_50 0.0032 0.0002 0.09 64 0.56

85

Chapter 5

Predicting Tenure from
Unstructured Resumes

This chapter explores to what extent job seekers’ future job tenures can be
predicted using only the information contained in their own résumés. Here,
job tenure is interpreted as the time spent in a single job occupation. To do
so, we compare the performance of several machine-learned survival models
in terms of multiple error measures, including the Brier score and the C-
index. The results suggest that ensemble methods, such as random survival
forest and Cox boosting, work well for this purpose. We further find that in
particular time-related features, such as the time a person has already worked
in a particular field, are predictive when predicting the person’s future tenure.
However, the results also show that this prediction task is difficult. There
is substantial subjectivity in both how job seekers define their jobs, and at
what level of granularity they indicate their job tenures. As a result, the
best performing models (survival ensemble methods) only perform marginally
better than the used benchmark (a Kaplan-Meier estimate).

87

5.1 Introduction

Given the high internet penetration of job seekers, one could expect it to be-
come easier for recruiters to find and select potential candidates. The reality,
however, sometimes turns out to be different. Early studies on online recruit-
ment reported profitable benefits for recruiters, including an increased speed
of hiring, or an improved quality applicants. However, they also reported
the problem of having to sift through a sometimes overwhelming number of
candidates [216].

Apart from this challenge of information overload, the mere digitization of va-
cancies and résumés also seems to have a substantial impact on how recruiters
search and select candidates. A study from the Ladders, a large résumé data-
base provider, shows that recruiters seem to only “read" a résumé for as brief
as 7.4 seconds on average [220]. This would be in agreement with studies
showing how, in general, digital documents are more scanned than read [202].
Although such a brief résumé scan may be a necessity in dealing with a large
number of candidates, at the same time, recruiters are likely to neglect useful
information from the résumé.

Many of the methods proposed in the literature that assist in matching job
seekers and vacancies online use the semantic overlap between the résumé and
the vacancy as a proxy for the quality of this match [84]. This, however,
neglects other types of information contained in résumés that could provide
information about the quality of the match. In this paper, we will instead
use the temporal data often contained in résumés. Most job seekers indicate
their job history in their résumé, in which their previous occupations are listed,
along with a start and end date for each job. Our aim is to predict job tenures,
defined as the time difference between these start and end dates, using other
data that is contained in the résumé. This data includes features such as the
type of job, education history, and the number of years of experience.

Predicting future job tenure from résumés is not a new problem. In fact, it
has been the subject of many studies in personnel psychology in the last few
decades [36, Ch. 12]. Many of these studies use Cox regression without (or
with small order) interaction terms [105]. This simplifies the interpretation of
cause-effect in these models. The problem we consider, however, differs from
these studies in three ways. 1) We automatize the processes of extracting
features from the résumé, both using a pre-trained résumé parser, and by using
word2vec. 2) Job tenure is determined through the résumé, rather than by
extracting this data from an HRIS. 2) We focus on methods that emphasize

88

on making accurate predictions, mostly by incorporating a large number of
second or larger order interaction terms, rather than models that emphasize
on explanations.

This chapter has the following structure. Section 5.2 discusses related work.
Section 5.3 introduces the survival models used in this study, and discusses how
to measure the error of these models. Section 5.4 discusses properties of the
résumé dataset, with a focus on properties of such unstructured datasets that
may lead to biased results. It further considers how to avoid such bias. Section
5.5 presents the outcomes of the survival model comparison from different
perspectives. Section 5.6 draws a final conclusion and provides directions for
further research.

5.2 Related work

The usage of biographic data (such as a résumé) for the purpose of personnel
selection has been the subject of many studies in personnel psychology, for one
part as it remains one of the most common procedures in personnel selection
[54]. And perhaps not without reason, as various meta-studies on the valid-
ity of using biographic data when predicting job performance show r2-values
between .33 and .37 [36, p. 261].

With the digitization of these biographic sources, predicting future job perfor-
mance based on this data comes with both opportunities and challenges. The
development of new state of the art data mining techniques and the increasing
volume and diversity of stored data related to candidates, jobs, and the labor
market, allows for revealing new patterns that were not possible to analyze
before [214]. On the other hand, the lack of explainability of models trained
by machine learning algorithms and their possible consequences should not be
taken lightly. One can easily imagine machine learning algorithms picking-up
patterns in the data that are unethical to act upon [151].

Machine learning techniques have been commonly applied to résumés or other
biographic sources for various applications. As unstructured résumés consist
for the most part out of textual data, it should not be a surprise that most
literature focuses on applying Natural Language Processing (NLP) techniques.
One common application is information extraction from résumés, which can be
used to assist a recruiter while searching through the vast quantity of résumés
in a résumé database (e.g., [244, 133]). Or job recommendation, in which the
semantic overlap between the résumé and vacancy can be used as a proxy to

89

evaluate the quality of the match [84]. In both applications, missing data is a
common issue [118].

Few studies consider the sequential and time-based elements in a résumé, which
in particular presents itself in the job history section. In résumés, it is common
to write down one’s previous jobs in chronological order and indicate the start
and end date of each job. This information could be used to infer a job
seeker’s most likely next job, given a sequence of previous jobs. For this
problem, several models have been suggested in the literature [185, 118, 145,
147]. Li et al. [147] compared several sequential models for this task, where
in particular a Long Short-Term Memory (LSTM) recurrent neural network
[104] with additional contextual data performed well.

From the start and end dates, one could infer how long job seekers will be
likely to remain in their jobs. For this problem, survival analysis has been a
frequently used method in personnel psychology, in particular in the form of
Cox regression [105]. The fact that survival models usually allow for censored
data makes these models attractive for studying turnover. Participants of the
study might still be “alive", or in other words still occupying the job under
study, before the end of the study. Since in such cases the full tenure is not
observed, these observations are right-censored.

Even though there has been a substantial increase in the number of studies
applying machine learning methods in the field of HR, and in particular for the
application of predicting employee turnover [214], only a few consider combin-
ing machine learning methods with survival analysis. Wang et al. [230] propose
a survival model that is fitted using a Bayesian model. The Bayesian model
was chosen to cope with the high dispersion in the number of observations for
a job transition from some job a to job b. I.e., most transitions have little to no
observations, whereas some self-transitions may be very frequent. The authors
show that if one is indifferent about to which job the job seeker switches, and
only considers how long the job was occupied, the Bayesian model outperforms
a model ignoring covariates in terms of perplexity. However, the difference be-
tween the with/without covariates models evaporates when considering more
passive job seekers.

Li et al. [145] discretize time and predict a value proportional to the sur-
vival function using a squared loss function. As the predicted values are only
proportional to the probability of remaining in a job, the study considers the
correct order of turnover events, rather than predicting tenure. The method
outperformed typical parametric or semi-parametric survival methods such as
a Cox regression or the log-logistic model.

90

5.3 Methods

5.3.1 Job transitions modeled as a survival model
Before we discuss the machine-learned survival methods, we will first introduce
some notation. This notation is also summarized in Table 5.1. Consider we
have job seekers j = 1, . . . , J ; each having a job history indexed by h =
1, . . . , nj ; where nj is the job that job seeker j occupies at the time of uploading
his/her résumé to the résumé database. I.e., it is the number of jobs held by
job seeker j at the time of observing his/her résumé. Observe that in modeling
job transitions, we assume jobs are non-overlapping.

Let Tj,h ∈ R+ be the observed elapsed time between the start of job h, and
the time at which the job seeker switches to job h + 1, which we will also
refer to as the tenure of the h-th job of job seeker j. The “observed" part is
crucial here: in reality, the time between the start of job h and the end of
job h + 1 may be partially censored, which is not reflected in Tj,h. Since in
survival analysis Tj,h is more commonly referred to as the failure time, we will
use both the terms tenure and failure time somewhat interchangeably in this
paper. Though, both have the same interpretation.

Likewise, let T̃j,h ∈ R+ be the uncensored tenure. That is, if observation (j, h)

is censored, T̃j,h is the tenure that would have been observed if (j, h) had not
been censored. If no censoring occurred, we have T̃j,h = Tj,h. We assume T̃j,h
to be a random variable, and since we consider the problem from a survival
analysis perspective, our interest lies mostly in estimating the survival function

Sj,h(t) = P(T̃j,h > t|xj,h), (5.1)

where xj,h is the observed covariate matrix containing P elements. We assume
both T̃j,h and Tj,h to be independent of all previous jobs and other jobs seekers,
given xj,h (do note that T̃j,h and Tj,h are dependent). Since this implies that
the job seeker and job index are reflected in xj,h, we will somewhat simplify
notation by also using the index i = 1, . . . , I to index jobs, where each i has a
one-to-one correspondence with some pair (j, h) and vise versa. I.e., the index
pair (j, h) will further only be used in case we want to be specific about a job
seeker, whereas index i will be used otherwise.

To estimate 5.1, we will frequently use the cumulative hazard function

Λi(t) =

∫ t

τ=0

λi(τ)dτ, (5.2)

91

with
λi(t) = lim

∆t→0
P(t ≤ T̃i ≤ t+ ∆t|T̃i > t,xi), (5.3)

being the hazard rate. From the hazard rate, the survival function can be
obtained via the relationship [116, p. 16].

Si(t) = exp(−Λi(t)). (5.4)

Estimates of the survival function, or other estimates, are denoted by adding
a hat (e.g., Ŝi(t)).

Although multiple types of censoring may exists in the data, we only model
right censoring explicitly. Other types of censoring are dealt with by trans-
forming the data itself. We will return to exactly how this (transforming the
data) is done in Section 5.4.2. For now, we assume only right censoring exists,
which is denoted by δi (0 if right censoring occurred, 1 otherwise).

Last, for validation, we will discretize time into intervals {u1, . . . , uR} of equal
length ρ ∈ R, where we truncate time at some point ρR. We do note that, since
employee tenure is right-skewed and overdispersed (see Figure 5.2), we plan to
truncate already for relatively small ρR (i.e., equivalent to 3-5 years). We wish
to select a small ρ, such that long tenures do not have a disproportionate effect
on our analysis. I.e., we choose R and ρ such that the equal time intervals do
not cause sparsity problems within the bin (which would happen for large t
and/or small ρ), but also do not cause the bins to be too imbalanced (which
would happen for large ρ).

5.3.2 Survival estimation methods

Benchmark models

All machine-learned survival models presented in this paper are benchmarked
against three benchmark methods. 1) A Kaplan-Meier (KM) estimate [116,
Ch. 4], 2) Cox proportional hazard model with an elastic net penalty [85],
where to estimate the baseline hazard the Brewlow estimator [152] is used. 3)
A binary survival tree using the log-rank splitting rule [111].

92

Variable Interpretation
j = 1, . . . , J Job seeker index.
h = 1 . . . , nj Job indices for jobs occupied by job seeker j; nj

being the number of jobs held by j.
i = 1, . . . , I Job index corresponding to a unique pair (j, h).
I Set of observations put aside as validation set,

i.e., I ⊆ {1, . . . , I}.
r = 1, . . . , R; ρ Time is discretized in bins of length ρ, with each

bin being indexed by r.
Tj,h Time between the start of the h-th job of job

seeker j and the latest time at which j still occu-
pied job h with certainty (i.e., this is either the
end of the tenure, or the censoring time).

δj,h 0 if the h-th job of job seeker j was right-
censored, 1 otherwise (which implies no censoring
occurred).

T̃j,h The uncensored tenure of the h-th job of job
seeker j.

xj,h, P Covariate vector for the h-th job of job seeker j
containing P elements.

Si(t), λi(t), λi(t) T̃i is distributed according to the survival func-
tion Si(t), with λi(t), and Λi(t) being the hazard
rate and cumulative hazard rate respectively.

γi,r Whether Ti switched jobs during interval ur.
vi,r Equals one if job i has churned before the start

of time interval r.

Table 5.1: Notation used

93

Ensemble survival models

A common approach to improve the quality of predictions from weak learners
is by using model ensembles. In this study, we consider two approaches: the
random survival forest introduced by [111], and a Cox boosting approach [91].

Random survival forest [111] extends the single survival tree by aggregating
multiple survival trees. Each tree is constructed from a bootstrap sample
including a different set of randomly drawn covariates. Let Λ̂i,b(t) be the
estimated cumulative hazard rate of bootstrap sample b ∈ {1, . . . , B} for ob-
servation i at time interval t. The averaged cumulative hazard rate is obtained
via

Λ̂i(t) =
1

B

B∑
b=1

Λ̂i,b(t), (5.5)

from which using Expression (5.4) the survival curve can be obtained.

To employ boosting, we use the boosting procedure by Friedman [86]. As
the method employs Cox’s partial likelihood, the method does not provide
an estimate of the baseline hazard. To find the baseline hazard, the same
procedure as for the Cox model was applied. That is, we use the Breslow
estimator to estimate the baseline hazard, though using the output from the
boosting model instead of the linear link function.

Neural survival models

Feedforward neural survival models Neural survival models have been
discussed by various authors, taking different approaches. One approach is to
use the Cox-PH model as an activation function, and use the log-likelihood of
the Cox model as loss function [243, 126]. However, as noted by [87], the Cox-
PH log-likelihood is problematic. One requires the full risk set, that is, the
set of non-censored observations still at risk of failure at some time t, which is
not available when naively splitting the dataset into batches. Alternatively, we
may use that the log-likelihood function of discrete-time data can be reduced to
that of a Bernoulli distribution [116, pp. 71-73], when only taking into account
those time intervals during which the job seeker was either still employed or
transitioned with certainty.

We will instead use a similar approach as Gensheimer & Narasimhan [87] to fit
neural survival models. More precisely, this study models the neural survival
model as a feedforward neural network, only adjusting the output layer to
produce a survival curve. To rewrite the problem to discrete time, let γi,r = 1

94

if Ti ∈ ur, δi = 1 (zero otherwise), and vi,r = 1 if Ti ≤ (r−1)ρ (zero otherwise).

The output layer of the neural network is modeled in two ways. In the flexible
variant, a simple feedforward neural network is used with one or multiple
hidden layers, applying a sigmoid activation to each output r ∈ {1, . . . , R} to
end up with estimates of the hazard rate.

The proportional hazard (PH) variant uses the proportional hazard assump-
tion. I.e., it assumes the hazard rate has the form λi(t) = λ0(t) exp(xTi β),
β ∈ RP being a weight vector. Following [116][p. 43], when assuming intrin-
sically discrete time, the (now also discrete) estimated hazard rate λ̂i(r) can
be written as

λ̂i(r) =
1

1 + exp(αi(r) + zi)
, (5.6)

with zi and αi(r) being outputs of different feedforward neural networks. Here,
α(r) has as input the covariate vector xi, followed by one or multiple hidden
layers. The variable zi is obtained by a weighted average over the elements in
the last hidden layer. Note that (5.6) is a sigmoid activation function, which
simplifies the implementation in for example Keras.

For both the PH and flexible approach, we find a loss function in the form of
the binary cross-entropy

L =

I∑
i=1

R∑
r=1

[γi,r log(λ̂i(r)) + (1− γi,r) log(1− λ̂i(r)vi,r)]. (5.7)

Note that when rρ > Ti and δi = 0, we have yi,r = 0 and λ̂i(r) = 0. Therefore,
these predictions do not contribute to the log-likelihood.

Recurrent neural networks In addition to the two feedforward models,
we also consider a recurrent neural network. The architecture of the model
is depicted in Figure 5.1. We either use a standard recurrent neural network
with a Gated Recurrent Unit (GRU) [46], or with a Long short-term memory
(LSTM) unit [104]. As we do not include time-varying covariates, only at r = 1
an input vector is inserted. At the other time periods, a vector containing
only zeros, denoted by 0, is fed into the network. Also here we multiply
(element-wise) the output vector (λ̂i(1), . . . , λ̂i(R)) by the censoring vector
(vi,1, . . . , vi,R) to exclude observations after censoring.

95

0 GRU/LSTM λ̂i(R)
·vi,R

γ̂i,R

. . .

0 GRU/LSTM λ̂i(2)
·vi,2

γ̂i,2

xi GRU/LSTM λ̂i(1)
·vi,1

γ̂i,1

Figure 5.1: Sequential architecture

5.3.3 Model evaluation

Brier score and C-index

To evaluate the survival models, we use the Brier score and the C-index, and
we consider a conditional integrated C-index, which will be explained in Sec-
tion 5.3.3. As discussed briefly in Section 5.3.1, evaluation is performed by
considering the number of failures in binned time intervals u1, . . . , uR. We de-
fine the Brier score at some interval ur over some validation set I ⊆ {1, . . . , I}
as [175]

BI(r) =
1

|I|
∑
i∈I

[yi,r − Ŝi(rρ)]2, (5.8)

where yi,r = 1{Ti>rρ}. Hence, the Brier-score is evaluated at the end of each
time interval.

The C-index considers the correct ordering of estimated failure times, rather
than predicting the survival curve correctly. The C-index, again over a vali-
dation set I, is defined as [232]

CI(r) =

∑
i1,i2∈I wi1,i2ŵi1,i2(r)δi1∑

i1,i2∈I wi1,i2δi1
, (5.9)

96

with ŵi1,i2(r) = 1{Ŝi1 (rρ)≤Ŝi2 (rρ)}, and wi1,i2 = 1{Ti1
<Ti2

}. I.e., such that
ŵi1,i2wi1,i2(r)δi1 = 1 if the estimated order of failure is correct, and observation
i1 (which failed first) was not censored, zero otherwise.

We choose not to incorporate IPCW weights [234], as the number of observa-
tions for the censoring distribution at certain points in time was rather lim-
ited. As the number of combinations (i1, i2) can grow large in large datasets,
we sample 10,000 jobs at random, over which the C-index is computed. Ties
are broken at random. Both the Brier score and C-index can be averaged over
all r ∈ {1, . . . , R} to obtain the integrated Brier score and C-index. These are
denoted by B̄I and C̄I respectively.

Integrated Conditional Concordance Index (ICCI)

Although the C-index provides some insight into the ability of survival models
to correctly assess which candidate will switch jobs first, it may be less suited
in practice. It assesses failure times at the start of both jobs, and all candidate
pairs in the data are considered, even candidates occupying very different job
types. In practice, however, we expect to encounter candidates who have
been already occupying their current job for some time τ . Furthermore, when
comparing candidates, we expect recruiters will be more frequently comparing
candidates with similar backgrounds. Therefore, we considered an alternative
error metric, which we refer to as the Integrated Conditional Concordance
Index (ICCI).

The computation is similar to that of the C-index. However, we only con-
sider pairs in some validation set Ic that satisfy some condition c, and we
use a truncated conditional expectation of the remaining survival time instead
of ŵi1,i2(r) in (5.9). We used three conditions of selecting the pairs in Ic.
The first is a stratified sample over the function_group and transitionlustrum
(both will be defined in Section 5.4). The second is a sample in which the
same number of items is drawn from each combination of function_group and
transitionlustrum, and the third approach is a random sample over all possible
pairs.

More formally, we condition the observations Ti1 and Ti2 on that already a
duration of length τ1 and τ2 has passed for these two jobs. I.e., the remaining
tenure equals (Ti1 − τ1)+ and (Ti2 − τ2)+ respectively, where a+ = max(a, 0).
Also, let

Qi(t, T̄) =

∫ T̄

τ=t

Si(τ)dτ. (5.10)

97

I.e., this is the truncated (at time T̄) expected remaining tenure for job i, given
that job i has already been occupied for a time of length t.

Hence, following the same logic as for the C-index, we now define

wi1,i2(τ1, τ2) = 1{(Ti1
−τ1)+<(Ti2

−τ2)+}, (5.11)

ŵi1,i2(τ1, τ2) = 1{Qi1 (τ1,Rρ)<Qi2 (τ2,Rρ)}, (5.12)

from which the ICCI for pairs following condition c is defined as

ICCIIc(τ1, τ2) =

∑
i1,i2∈Ic wi1,i2(τ1, τ2)ŵi1,i2(τ1, τ2)δi1∑

i1,i2∈Ic wi1,i2(τ1, τ2)δi1
. (5.13)

The ICCI can further be averaged over different values of τ1 and τ2 to obtain
one ICCI.

5.4 Data preparation

5.4.1 Engineering of existing features
The data used in this study was extracted from résumés, which were uploaded
to the Dutch job board Gus [98]. The jobs to which these applicants applied
are temporary jobs. Although the dataset contained some non-Dutch résumé,
these were removed as they complicate the NLP procedures, while only being a
negligible part of the dataset. The job seekers applied between 2005-01-01 and
2016-10-17. In total, the dataset contains 50,000 unique job seekers, which we
split into a training, validation and test set according to a 70/10/20 split. In
total, the dataset encompasses 131,059 unique jobs. To avoid data dredging,
all statistics presented in this section are based on the training set.

Since the résumés are plain text documents, we used technology from Textker-
nel [218] to extract information from the text. We use the common convention
in résumés to include the job history in a table. In this table, each record in-
cludes a (textual) description of the previous job, and the start and end dates
of the job. From this data, we extracted the variables transition lustrum (year
in which job seeker j started job h, grouped into clusters of 5 years), order
(number of previous jobs job seeker j had occupied just after starting job h),
and expdays (total observed work experience of candidate j just before the
start of job h in days).

98

We also extracted the edu_lvl (the candidate’s highest education level, mapped
to the Dutch education system), age (candidate’s age at the start of the job),
gender, and the job description given by the candidate. The job description
was mapped to a vector space in two ways. The first approach used a classifi-
cation model from Textkernel, which maps the job to a three-layer hierarchical
classification (of which the upper two were used as covariates) and classifies
the industry of the job. The second approach is unsupervised, in which we
trained a word2vec [173] model on the candidate’s previous job description.

5.4.2 Computing tenure from parsed résumé data
From analyzing the job seekers’ start and end dates, one can observe that job
seekers tend to indicate the start and end date of each job at different levels
of granularity. Some indicate the start and end dates on a monthly level,
whereas the majority indicate these dates on a yearly level. In case candidates
indicate their start and end dates on a yearly level, we considered this a case
of interval-censored data. Besides the interval censoring, the start and end
dates also may incorporate other types of censoring. The percentage of job
occupations having a particular type of censoring is indicated between the
brackets in the remainder of this section.

Year interval (42.20%) indicates candidates have rounded the start and end
date of their occupation to entire years. No censoring (38.00%) implies the
candidate has indicated his/her occupation in months. Right NLJ (Right
censoring, Not Last Job; 10.3%) indicates the start date is either rounded to
a monthly or yearly level, but the end date of the job is missing. However,
the candidate does have a job in his/her résumé with a start date later than
the job under consideration. Hence, this type of censoring can still be seen as
interval censoring, as we do know the job ended before the start date of the
next job.

Right LJ (Right censoring Last Job; 5.87%) indicates the start date is on
a monthly or yearly level, but the end date is missing. Also, the candidate
has no other job where the start date is after the start date of the job under
consideration. In this case, we assume the occupation of the candidate did
not end before the moment he/she applied to the vacancy, and is therefore
considered as a case of right censoring. Likewise, Left NFJ (Left censoring,
Not First Job; 0%) and Left FJ (Left censoring, First Job; 0.03%) indicate
cases of left censoring. Here, if the job is not the first job, the start date can
be guessed by using the end date of the previous job. Last, Complete (1.62%)
indicates both the start and end date are missing.

99

To avoid our estimates to be biased by these different types of censoring, we
applied the following procedure. First, all observations with Complete and Left
FJ censoring were removed. The former were removed because they are non-
informative. The latter, as these only encompass a very small number of jobs.
In the case of Right NLJ, the end date was inferred by considering the start date
of the next job. If this start date was rounded to entire years, the observation
was relabeled as Year interval, after which we processed these observations in
the same way as for the other Year interval observations. Although the same
procedure could be applied to observations having Left NFJ censoring, using
the start date of the previous job, we had no observations with this type of
censoring.

In case the candidate was only censored in the start and/or end year of his/her
occupation (Year interval), we added a random number of months to the
start and/or end year of the occupation. These random number of months
followed the overall distribution of monthly turnover. Because of the year
interval censoring, the probabilities for January and December were inflated.
To correct for this, we used the monthly distribution of the start date, and
removed the probabilities for these months. After removal, the probabilities
for January and December were estimated by fitting a cubic spline between
the probabilities of the remaining months. Observations without censoring
remained in the dataset as-is. The new start and end dates are further referred
to as the adjusted start and end dates.

Besides removing and correcting censored data, we also removed observations
having occupations with tenures lasting longer than 50 years, occupations that
started before the candidate’s 18th birthday, occupations that started after the
candidate’s 67th birthday, and observations with negative tenures. To reduce
the number of unique values for categorical attributes, we reassigned categori-
cal values with fewer than 30 observations to a category “other”. Missing data
was imputed using another random forest algorithm as described by Ishwaran
et al. [111], which is implemented in the RandomForestSRC R package [110].
To fit this random forest model, the package’s default parameters were used.

100

5.4.3 Transforming job descriptions to a vector space
Recently, doc2vec [138] and word2vec [173] have grown in popularity, and have
shown to outperform other state-of-the-art word and document embedding
procedures [33]. Although we originally tried both methods, we found that
the document vectors from doc2vec were little discriminatory, and therefore
we continued using only word2vec for document embedding.

Before training the word2vec model, we removed (Dutch) stopwords, and the
words were stemmed using the Snowball stemmer [27]. We used a vocabulary
of 20,000 unique words having the largest tf-idf values. Both models were
trained using negative sampling with a sampling factor of 10−5, from which
word pairs were constructed using skip grams with a window size of 3, as larger
window sizes did not improve the results.

The word2vec model was trained using Keras with a Tensorflow backend [79, 1].
We used an embedding size of 64; 100 training epochs; a batch size of 65,536;
an initial learning rate of 0.1; and we used rmsprop [221] to update the learning
rate in subsequent epochs. To obtain document vectors from word vectors, we
computed a weighted average over the word vectors for each job description.
As weights we used the tf-idf value of each word. We did experiment with
different epochs, batch sizes, and initial learning rates; these did not improve
the results.

5.4.4 Summary of the dataset
A numerical summary of the training data is shown in Table 5.2. Perhaps
the most important implication of the data is the number of missing values.
For some variables, the most frequent category is “NA”. The summary further
shows that, although the dataset contains heterogeneous jobs, the majority of
jobs relates to administrative and secretary jobs, and commerce-related jobs.

Figure 5.2 shows the number of previous jobs candidates have held (a), and the
estimated survival function of tenure using the Kaplan-Meier estimate over all
jobs (b). Most job histories are relatively short: 52% of the job seekers have
fewer than four previous jobs. Furthermore, when candidates switch from
one job to another, this job was classified as having the same function_group
in approximately 31% of the cases. Hence, most job transitions are between
similar jobs. From examining the raw job descriptions, one also finds that job
seekers can have different definitions of a job. In particular, some candidates
split different jobs for the same employer into multiple jobs in their résumé,
whereas others consider this as one job, with multiple responsibilities.

101

Table 5.2: Data summary

Feature Type Summary
citycluster cat 4 cat., most frequent: “cluster4" (3.47%), NA: 95%
education_level cat 5 cat., most frequent: “Beroepsonderwijs" (22.53%), NA: 45%
function_class cat 25 cat., most frequent: “Administratie en klantenservice"

(19.50%), NA: < 1%
function_group cat 287 cat., most frequent: “Administratief medewerkers"

(6.24%), NA: < 1%
gender cat 2 cat., most frequent: “2" (=female) (13.63%), NA: 75.41%
month_of_startdate cat 12 cat., most frequent: “12" (=December) (62.86%), NA: < 1%
sector cat 23 cat., most frequent: “Handel" (12.11%), NA: < 1%
transitionlustrum cat 12 cat., most frequent: “2005-2010" (34.57%), NA: < 1%
year_of_birthlustrum cat 9 cat., most frequent: “1960-" (11.86%), NA: 43.94%
expdays Num mean= 3679.88, standard dev.= 3705.06, NA: 20.34%
expdaysfunctiongroup Num mean= 583.61, standard dev.= 1531.59, NA: 10.59%
order Num mean= 4.13, standard dev.= 3.05, NA: < 1%
orderperfunctiongroup Num mean= 1.77, standard dev.= 1.43, NA: < 1%

We also noted that it is quite common for job seekers to occupy (at least)
two jobs at the same time somewhere during their career: 52% of the job
seekers have at least one overlapping job pair. For these jobs, we determine
the job order h by the start date of the job (ties were broken at random),
and features related to experience (expdays,expdaysfunctiongroup, order, and
orderperfunctiongroup) were computed using only completed jobs.

The survival function in Figure 5.2 shows that most candidates have a rather
short tenure. After one year, approximately 50% of the candidates already
switched jobs. Although this is not representative for the Dutch workforce as
a whole, it is common for temporary workers to have shorter tenures [38]. We
also note that we do not take into account whether the turnover was voluntarily
or involuntarily, and we did not include data related to gaps in the résumé.

5.5 Results

5.5.1 Overall performance
Table 5.3 gives an overview of the grid search we applied to the validation set
to find appropriate values for the models’ hyperparameters. The obtained best
parameter values are given in the last column of Table 5.3. We choose periods
of 3 months (i.e., ρ = 0.25) as an appropriate trade-off between model accu-
racy and practical usage. I.e., although recruiters would prefer short periods

102

Figure 5.2: Number of previous jobs (a) and the estimated overall survival
curve (b).

(a) Number of previous jobs held by
the job seekers in the training set.

0.00

0.05

0.10

0 10 20 30 40
Job transitions

Fr
ac
ti
on

of
jo
b
se
ek
er
s

(b) Kaplan-Meier estimate of the sur-
vival curve.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Time (years)

Su
rv
iv
al

(of say one month), this would lead to reduced accuracy, making the models
unreliable. Hence, three months was considered as a proper trade-off between
the two.

As Table 5.2 suggests, our dataset contains some variables that could introduce
unwanted discrimination in terms of gender and age. Instead of removing these
attributes upfront, we include them while training the model, but impute
them by their overall average value (in case of categorical values, we impute
after dummification) during validation. However, it should be noted that this
procedure was only partially effective, due to the many missing values for both
year_of_birthlustrum and gender (Table 5.2).

Figure 5.3 shows the resulting Brier and C-index on the test set, whereas Table
5.4 shows the integrated and normalized scores. Note that the different types
of sampling to compute the ICCI (stratified, equal per group, and random)
refers to the sampling method described in Section 5.3.3. Since the Kaplan-
Meier estimate is the model with the least complexity (i.e., it does not take
into account any covariates), the results of the KM model are emphasized in
Figure 5.3.

The abbreviations have the following interpretation: NN-Flex, NN-PH, NN-
GRU, and NN-LSTM represent the flex, proportional hazard, Gated Recurrent
Unit, and Long Short-Term Memory neural networks respectively (Section

103

Table 5.3: Hyperparameter grid search

Model Hyperparameters Best found
parameters

Kaplan-Meier NA NA

Cox-PH with α ∈ {0 (Ridge), 0.5, 1 (Lasso)} α∗ = 1 (Lasso),
elastic net penalty penalty weight as in [209] penalty∗ = 0.0107
Survival tree term. node size = 6

Random survival trees ∈ {100, 500, 1000}, trees∗ = 500,
forest term. node size = 6, depth∗ = 12

depth ∈ {6, 12},
random split points = 5,
tree feature sample size =

√
P

Cox boosting trees ∈ {1000, 2500, 5000}, trees∗ = 2, 500,
shrinkage ∈ {0.001, 0.05, 0.01, 0.1} shrinkage∗ = 0.01
depth ∈ {3, 6} depth∗ = 3

Neural survival hidden units ∈ {64, 128}, hidden units Flex ∗ = 128
non-sequential hidden layers = 2, hidden units PH ∗ = 64

epochs = 100, learning rate Flex∗ = 0.01
batch size = 65, 536, learning rate PH∗ = 0.001
learning rate ∈ {0.001, 0.01, 0.1}

Neural survival time periods = 21, hidden layers GRU∗ = 16
sequential hidden layers ∈ {1, 4, 16}, hidden layers LSTM∗ = 16

epochs = 100, learning rate GRU∗ = 0.001
batch size = 9, 292, learning rate LSTM∗ = 0.001
learning rate ∈ {0.001, 0.01, 0.1},
drop out = 0.1

5.3.2). RSF, and GBM represent the Random Survival Forest and Gradient
Boosted trees (Section 5.3.2). Cox Lasso, Surv. tree and KM represent the
Cox proportional hazard model with a Lasso penalty, a single survival tree,
and the Kaplan-Meier estimate (Section 5.3.2). All models are fitted using the
best hyperparameters found during training (Table 5.3). For readability of the
figures and tables, we only include the best performing sequential (NN-GRU)
and feedforward (NN-Flex) neural network.

Gradient boosted trees and random survival forests produce the best results,
with a slight preference for GBM. Interestingly, the neural models and the
Cox model barely outperform the Kaplan-Meier estimate both in terms of the
Brier score and C-index. The single survival tree shows a trade-off between
the Brier score and C-index. For t < 3, it shows reasonable performance in

104

Brier score C-index

0 1 2 3 4 5 0 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

Time (years)

Model
NN-Flex

GBM

Cox Lasso

NN-GRU

KM

RSF

Surv. tree

Figure 5.3: Brier score and C-index over time

terms of the C-index, but the results are poor in terms of the Brier score.

The good performance of random survival forest and GBM seems to diminish
when we include conditional survival times, as shown in Table 5.4: although
in absolute terms the ICCI for GBM and random survival forest are somewhat
comparable to their C-index, the values are also closer to the results of a KM-
estimator. Furthermore, taking different kinds of samples only had a marginal
impact on the ICCI. Hence, when predicting the correct order, the advantage
of using more complex models seems to diminish.

5.5.2 Performance on sub-datasets
Next, we split the results per function_group in order to study differences in
predictive ability for different job types. As GBM has the best results over
the combined score (Table 5.4), we use this model for further inference. The
results over the five largest job types in the dataset are shown in Figure 5.4. As
we may have expected from the Brier scores in Figure 5.3, which are somewhat
similar to those of a Kaplan-Meier estimate, the fitted survival curves for the
different job types are also rather similar.

105

Table 5.4: Integrated Brier score, C-index and ICCI

ICCI
Integrated Integrated ICCI eq. per ICCI

Model Brier C-index stratified group random
GBM 0.16 0.69 0.66 0.66 0.67
RSF 0.17 0.68 0.65 0.65 0.66
NN-Flex 0.19 0.51 0.64 0.64 0.63
NN-PH 0.18 0.51 0.64 0.65 0.63
NN-LSTM 0.18 0.51 0.63 0.64 0.64
NN-GRU 0.18 0.50 0.63 0.62 0.63
KM 0.18 0.50 0.64 0.64 0.64
Cox Lasso 0.19 0.50 0.64 0.65 0.63
Surv. tree 0.30 0.53 0.56 0.55 0.54

We also considered the effect of excluding certain attributes from the model.
To do so, we construct four sub-datasets: 1) a dataset in which age and gen-
der were not imputed, 2) a dataset without the word2vec word embedding,
3) a dataset in which we exclude attributes derived from the job classifier
(i.e., excluding function_class, function_group, sector, expdaysfunctiongroup,
and orderperfunctiongroup), and 4) a dataset including only features related
to time-dependent variables (i.e., including transitionlustrum, order, expdays,
month_of_startdate, orderperfunctiongroup, and expdaysfunctiongroup). A
comparison between the performance of GBM on these datasets and the full
dataset is shown in Figure 5.5. Especially inclusion of the time variables caused
a substantial improvement in both the Brier sore and C-index. Inclusion/ex-
clusion of other types of attributes has a negligible effect.

5.6 Conclusion and further research

In this paper, we considered to what extent machine-learned survival models
are capable of predicting (job) tenure, extracted from job seekers their résumé.
Here (job) tenure is defined as the time difference between the start date and
the end date of a job, where this job is indicated by a job seeker in the job
history section of his/her résumé. To predict these tenures, several attributes
were extracted from the job seekers’ résumés. These include attributes ob-
tained from candidates’ own job descriptions, which were extracted using an
existing text classifier and a trained word2vec model, and several attributes
related to work experience. To make the predictions, we compared multiple
machine-learned survival models in terms of the Brier score and C-index to
determine which of these models performs best.

106

Survival curve Brier score C-index

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

Time (years)

Job type
Administrative
Management

Warehouse management
Production

Commerce

Figure 5.4: Results over the 5 most common job types

From our comparison of machine-learned survival models, we find that es-
pecially tree-based ensembles, such as a random survival forest and Gradient
Boosting Machines, work well to predict job tenure from unstructured résumés.
They outperformed benchmark models in terms of the Brier score and C-index.
These benchmarks included a Kaplan-Meier estimator and Cox regression, but
also more complex models such as neural survival models and recurrent neural
networks. Especially the importance of time-related variables in these models
is interesting. Matching jobs to vacancies is often done using semantic overlap.
E.g., by comparing skill overlap between the vacancy and job. Our results sug-
gest that including time-related variables in these matching algorithms may
improve their performance.

Although tree-based ensembles outperformed benchmark models, still the pre-
diction problem remains difficult. The difference with benchmark models are
relatively small, and if one takes into account conditional survival times, and
compares more similar job pairs, the error scores between the tree-based en-
sembles and benchmark models become more similar.

This limited performance may be explained in several ways. First, it should be
acknowledged that predicting job tenure from résumés is a difficult prediction
problem. Previous work (using mostly Cox-PH models [105]) finds only weak
correlations between predictors and tenure, (r2 between 0.33 and 0.37) [36,
p. 261]. Second, as illustrated in this study, résumés come with considerable

107

Brier score C-index

0 1 2 3 4 5 0 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

Time (years)

Data set
All

No word2vec

No time variables

No job classifier

Time variables only

Figure 5.5: Scores on other datasets

fuzziness. Turnover itself may be indicated at different levels of granularity.
Missing data is a considerable problem, as the résumé parser has to deal with
a variety of formats. Also, job seekers may have different definitions of a job.
E.g., one might define two positions at the same employer as one job, whereas
another will consider these as two jobs. Naturally, such fuzziness complicates
interpreting models derived from résumés.

Given these results, we are in particular interested in two directions for fur-
ther work. Given the fuzziness of résumé data, an interesting direction would
be to study whether survival analysis on résumés could benefit from models
trained in different contexts, i.e., transfer learning. One could think of ap-
plying language models trained on larger corpora. But also training survival
models on corporate turnover data, for which we expect to have more precise
measurements, would be an interesting direction.

A second direction is with regards to the practical implications of predicting
tenure from résumés for candidate recommendation. It would be interesting to
consider how these models compare with semantic matching methods, using
more application-directed error scores such as NDCG. From a practical per-
spective, further research could also consider whether the model benefits from

108

asking the user for additional data when uploading one’s résumé.

109

Chapter 6

Predicting Applications on
Recruitment Websites

The Internet has substantially changed how organizations market their vacan-
cies and how job seekers look for a job. Although this has many benefits, such
as simplifying the communication, it can also cause problems. Some vacancies
are obtaining more applications than can be handled by the recruitment de-
partment, while other vacancies may remain unfulfilled for a long time. Data
analysis might reveal insights into what strategies are effective to solve these
problems. To analyze these problems, we therefore consider the predictability
of the number of applications per vacancy per week, and to what extent this
can be controlled using online marketing campaigns. After testing the pre-
dictive quality of several machine learning methods on a dataset from a large
Dutch organization, we found that a Random Forest model gives the best
predictions. Although these predictions provide insights into what recruiters
and hiring managers can expect when publishing a vacancy, the error of these
predictions can be quite large. Also, although the effect of online marketing
campaigns on the number of applications is significant, predicting the effect
from historic data causes problems due to collinearity and bias in the usage
of these campaigns. Nevertheless, these predictions are insightful for both re-
cruiters and hiring manager, to manage their expectations when publishing a
vacancy.

111

6.1 Introduction

The internet revolution has substantially changed how job seekers look for
a job and how organizations attempt to attract job seekers [225]. Already
in 2003, 94% of the global Fortune 500 companies were using a corporate
recruitment website to attract job seekers [90]. Also, online sources such as
social media, online professional networks, and company websites are being
used for effective employer branding [2]. Furthermore, the percentage of job
seekers who are using the internet is growing steadily [216].

Advantages of using corporate recruitment websites have been discussed in
previous studies, showing benefits including cost effectiveness, speeding up the
hiring process, and ease of use both for recruiters and job seekers [255, 140, 89].
There is, however, yet another benefit of using corporate recruitment websites
that has not been explored by previous research. That is, it enables tracking
the behavior of job seekers on the website using e-commerce software. By
tracking this job seeker behavior, recruitment departments can obtain valuable
insights on how to attract or repulse applications. This might lead to strategies
for reducing recruitment lead time and cost.

To take a first step into exploring how vacancies attract job seekers and how
this might be controlled, this study considers the predictability of the num-
ber of job seekers that will apply to an online vacancy per week. This metric
is referred to as the application rate. In order to predict this metric, mul-
tiple machine learning techniques including Random Forest, Support Vector
Regression, and Artificial Neural Networks were applied. The data used to
predict the application rate included characteristics of the vacancy such as
work location, required education level, and job title. Furthermore, also data
describing whether the vacancy was used in online marketing campaigns such
as Google Adwords, other vacancies on the website that might compete with
the vacancy, and time related attributes such as the current recruitment lead
time and application rates in weeks prior to the predicting period were used.

This chapter has the following structure, Section 6.2 provides an overview of
previous literature on the effectiveness of online recruitment websites. Section
6.3 will discuss how data was obtained and prepared for this analysis. In
Section 6.4, the findings from preliminary data analysis will be discussed that
affect the choice of predictive models. Section 6.5 will give an overview of the
methods that were used to predict the application rate. Finally, Section 6.6
provides an overview of the predictive quality of these methods along with its
implications.

112

6.2 Related work

The ability of corporate recruitment websites to attract job seekers has been
considered in multiple studies, often by sending questionnaires to either job
seekers or employers. The results of these studies differ. Some show the
potential in terms of cost effectiveness, reducing recruitment leadtimes, and
ease of use for both recruiters and job seekers [255, 140, 89]. Other studies,
however, show a more modest perception. Brown [29] found that 75% of all job
seekers find recruitment websites too complicated. This perception is shared by
Maurer and Liu [170], who identified the management of potential information
excess on corporate recruitment websites as being one of the key design issues
for recruitment managers. Besides the excessive information organizations
might send to potential job seekers, the opposite also holds. Vacancies might
receive a large number of applications, including many unsuitable ones. Parry
and Tyson [186] found that this is one of the reasons why a quarter of the
organizations they examined who were using internet recruitment methods
found it unsuccessful.

Machine learning can play a role in managing the information spread by both
the employer and job seeker. In particular, it can be used to investigate the
relationship between recruitment efforts and recruitment outcomes. These
relationships can be used to control the quality and quantity of applicants,
and the quality of the employer’s brand.

Previous research has not paid much attention to how machine learning could
be applied to manage the information spread by employers and job seekers,
apart from application selection [214], and résumé parsing [39]. Although these
methods automate part of the recruitment job, thereby enabling recruiters
to handle a large number of applications, being able to control the quality
and quantity of applicants would also decrease the workload of recruiters.
Furthermore, fewer but better qualified applicants also means fewer rejections,
which is beneficial for both job seekers and employers.

113

6.3 Data gathering and preparation

Data gathering To study whether the number of applicants who apply to
a vacancy can accurately be predicted and controlled, data was gathered from
a large Dutch company that employs over 30,000 people and has on average
150 vacancies on its corporate recruitment website.

Data was gathered from three systems. First, from an Application Tracking
System (ATS), in which vacancy characteristics are stored such as work loca-
tion, required education level, and working hours. Second, data was gathered
from the corporate recruitment website’s Google Analytics account. In par-
ticular, how many job seekers visited the corporate recruitment website per
week, and how frequent job seekers followed different paths from the website’s
landing page to the application submit page (the webpage visited after having
submitted an application). Also, Google Analytics is capable to keep track of
whether job seekers visited the website via a paid hyperlink that was part of an
online marketing campaign. This data was used to determine which vacancies
had been used in online marketing campaigns. Third, the number of weekly
tweets the recruitment department published via their recruitment Twitter ac-
count was gathered, along with whether certain vacancies were mentioned in
a tweet.

Combining these three data sources gives per vacancy v, per time period t (in
weeks), the vacancy characteristics of v, whether v was used in certain online
marketing campaigns, and how many job seekers navigated from the landing
page to the vacancy’s submit page during time period t. This dataset was
extended with time-related data such as the recruitment lead time at time t,
and application rates of a vacancy in weeks prior to week t.

The dataset was split into a test and training set. The training set contained
all values between 2013-08-26 and 2015-09-31, whereas the test set contained
all values between 2015-10-01 and 2015-12-31. This split was chosen for two
reasons. First, at the time of splitting the dataset there was no knowledge of
possible time dependency in the data. If the application rate would include
this time dependency, then validating the predictive model on the last period
of the total dataset would produce the most realistic evaluation. Second, three
months is the maximum period for which it is safe to assume that the vacancy
portfolio over that period is known.

114

Data preparation To improve the quality of the dataset, multiple opera-
tions were performed. Attributes related to work location and job title con-
tained many possible categorical values, which was not practical for analysis.
To reduce the number of categorical values the locations were clustered based
on similarities in their application rate probability density. These probabil-
ity densities were clustered using K-means clustering. To find an appropriate
number of clusters, the Akaike Information Criteria (AIC) was used, which
was computed for K = 1, . . . , 10 clusters. If a cluster had fewer than 100 ob-
servations, the observations were assigned to the cluster closest to the overall
mean application rate. Besides location, attributes the job title had even more
unique values, making the usage of the probability density unpractical. As an
alternative, similar job titles were identified and clustered manually.

In order to identify attributes having a small variance, the frequency cut-off
from the nearZeroVar function of the caret package was used [134]. Since all
predictors are either binary, categorical or discrete, it was possible to apply
this procedure on all predictors. Let Ni,j be the frequency of a value i of
category j. Furthermore, let N(l),j be the lth order statistic of N1,j , . . . Nn,j ,
then we have frequency ratio: Fj =

N(n),j

N(n−1),j
. Thus Fj gives the ratio of the

most frequent and second most frequent value of attribute j. Attributes were
removed from the dataset if Fj > 19.

During the last data preparation step, categorical attributes were dummified
into binary vectors. The feature values xij were normalized using x̃ij =

xij−x̄j

s(xj) .
Here x̄j and s(xj) are the mean and standard deviation over the values of
attribute j respectively.

6.4 Exploratory data analysis

The application rate When considering possible probability distributions
of the application rate, a Poisson distribution would come first to mind. How-
ever, as Figure 6.1 suggests, the Poisson distribution does not seem to fit the
data well. The application rate’s distribution is more zero-inflated and overdis-
persed than a Poisson distribution. Dependent on the nature of the vacancy, a
log-normal or negative binomial distribution is more appropriate. The distri-
bution also confirms previous research, stating that some vacancies can attract
a large number of applications [186]. In fact, 10% of the rates account for 53%
of all applications.

115

0 1 2 4 7 12 21 35 58 96 225

Application rate

Fr
eq
ue
nc
y

0
10
00

20
00

30
00

40
00

Figure 6.1: Histogram application rate

The total number of applications and sessions Besides considering the
distribution of the application rate, also the predictability of the total num-
ber of applications per week was considered. To predict these metrics, the
structure of the vacancy portfolio and the used online marketing campaigns
were used as predictors. This analysis might already give an indication of how
online marketing campaigns can affect both the traffic to the website and the
number of applications. Furthermore, if the residuals of this model would be
highly correlated, this could be an indication of time dependency, which would
effect the selection of predictive models for the application rate.

To predict the number of applications and sessions per week, the status of
the online vacancy portfolio and the number of vacancies subject to certain
online marketing campaigns were used as predictors. The status of the vacancy
portfolio was determined by counting the number of online vacancies having
certain characteristics such as the same location, work area, job description,
and required education level. A linear regression model was used to determine
the effect of the online vacancy portfolio and online marketing campaigns on
the total number of sessions and applications. This linear regression model did
not include any interaction effects. Although also more complex methods can
be applied, the number of observations was relatively small compared to the

116

number of predictors. Therefore, using more complex methods was likely to
cause overfitting. A backwards AIC algorithm was used to include only those
predictors having the most predictive value.

Applying these methods gave R2 values of 0.68 and 0.56 when predicting the
weekly number of sessions and weekly number of applications respectively. The
models also indicate that it is difficult to determine the exact effect of online
marketing campaigns on the total number of weekly sessions and applications.

Although the marketing campaigns are significant, the campaigns are fre-
quently used in combination with each other, which makes it difficult to dis-
tinguish the effect of a single campaign. This can be seen if we compute the
condition indices and variance decomposition proportions. If we add up the
variance decomposition proportions obtained from the number of vacancies
subject to Facebook, Indeed and Google campaigns over the largest condition
indices (85, 102 and 128 resp.), this sum becomes 0.692, 0.797 and 0.91 re-
spectively, which are larger than our threshold value of 0.5. A possible remedy
for this collinearity is to add more characteristics of the campaigns to the
dataset, such as the profiles used in a Facebook campaign. This was however
not considered in this study.

Besides collinearity, an increase in online marketing campaigns can also be a
response to a small number of applications, which makes the estimated effect
of online marketing campaigns on the number of session and applicants biased.

When considering the residuals of the models predicting the number of weekly
sessions and applications, a Box-Pierce test showed that these residuals were
correlated. However, when examining the autocorrelation and partial autocor-
relation functions this correlation turns out to be small. Both the autocorrela-
tion and partial autocorrelation show a maximum absolute correlation of 0.21,
at lag 2 and 1 respectively. Therefore, for simplicity, it was found acceptable
to assume that the residuals were uncorrelated. As a result it was assumed
that the total number of applications per week is independent of the date of
the measurement.

117

Best sources Also the relationship between the number of sessions origi-
nating from different websites via different devices, and the number of weekly
applications was considered. Again, a linear regression model was used to avoid
overfitting. Since visitors to the corporate recruitment website can originate
from many different sources, only the top four sources causing most traffic were
considered. Smaller sources were combined in an ‘other’ category. The source
- device combinations causing most traffic to the website did not produce most
applications. Where visitors originating from Google on a desktop produced
most traffic to the website, changes in direct traffic on either desktop, mo-
bile or tablet and traffic from the corporate website were the main drivers for
changes in the number of weekly applications.

6.5 Methods

6.5.1 Method selection
To determine which methods would be most suited to predict the application
rate, a number of considerations were taken. First, since the application rate
is count data, its prediction is considered to be a regression problem. Sec-
ond, exploratory data analysis found that the data is more zero-inflated and
overdispersed than a Poisson distribution. Therefore, predictive models that
incorporate zero inflation and overdispersion are preferred. Third, during ex-
ploratory data analysis, it was found that when predicting the total number
of applications per week the residuals of this model are only slightly corre-
lated. As a result, it was assumed that the total number of applications per
week is independent of the date of the measurement. However, it still can be
dependent on other time indicators, such as the current recruitment lead time.

Fourth, the dataset still contained a large number of attributes, some of which
might not be useful for the predictive model. To reduce the number of at-
tributes, methods that included some form of variable selection were preferred.
Fifth, since a grid search was applied to find good model parameters, methods
that were able to produce good results within reasonable time were preferred.
Sixth, methods that have been applied successfully in other regression appli-
cation were preferred.

Using these criteria seven methods were identified: Linear elastic net, Poisson
elastic net, Tweedie elastic net, Classification And Regression Trees (CART),
Random Forest, Support Vector Regression (SVR), and Artificial Neural Net-
works (ANN).

118

6.5.2 Method overview

Linear elastic net

Linear elastic net is a method that attempts to minimize the sum of squared
error plus a linear combination of the Lasso and Ridge penalty. Let
PSSE(λ, β, α) be the penalized sum of squared error with λ the weight of
the penalty. α indicates to what extent either the Ridge or Lasso penalty is
taken into account, and β is the effect vector to be estimated. PSSE(λ, β, α)
is given by:

PSSE(λ,β, α) = 1
2N

∑N
i=1(yi − β0 − xTi β)2

+λ
[
(1− α) 1

2 ||β||
2 + α||β||1

]
(6.1)

To minimize (6.1), the glmnet R package was utilized, which applies a coordi-
nate descent algorithm to estimate β [85]. To determine good values for λ and
α a grid search was applied. For λ, K = 100 uniformly spread values between
λmax = maxl|〈xl,y〉|

Nα and λmin = ελmax were used. To find a good value for α,
values from 0 up to 1 with increasing steps of 0.2 were used.

Poisson elastic net

Poisson elastic net is a combination of a generalized linear regression model
and elastic net using the link function g(µi) = log(µi), where µi = E(yi|xi).
Instead of the sum of squared error, the log-likelihood is used to estimate β.
Let PLL be the penalized log-likelihood, then β is found by maximizing (6.2).

PLL(λ,β, α) = 1
2N

∑N
i=1

[
yix

T
i β − exp

(
xTi β

)]
−λ
[
(1− α) 1

2 ||β||
2 + α||β||1

]
(6.2)

To maximize (6.2), again the glmnet R package was used. In case of Poisson
regression, glmnet iteratively creates a second order Taylor expansion of (6.2)

119

without the penalty, using current estimates for β. This Taylor expansion is
then used in a coordinate descent algorithm to update β [85, 102]. To find
appropriate values for λ and α, the same grid search as in linear elastic net
was applied.

Tweedie elastic net

To incorporate that the application rate is more zero-inflated and overdispersed
than a Poisson distribution, the Tweedie compound Poisson model was used.
The Tweedie compound Poisson model can be represented by Y =

∑n
i=1Xi,

where Y is the responds vector, n a Poisson random variable, and Xi are
i.i.d. Gamma distributed with parameters α and γ. The penalized negative
log-likelihood is given by (6.3) [195].

PLL(λ,β, α) =
∑n
i=1

[
yi exp [−(ρ−1)(xT

i β)]
ρ−1 +

exp [(2−ρ)(xT
i β)]

2−ρ

]
+λ
[
(1− α) 1

2 ||β||
2 + α||β||1

]
(6.3)

To minimize (6.3), the HDTweedie R package was used. This method applies
an iterative reweighted least squares (IRLS) algorithm combined with a block-
wise majorization descent (BMD) [195]. To find appropriate values for λ, the
standard procedure from HDTweedie was used, which first computes λmax such
that β = 0, and then sets λmin = 0.001λmax. The other m−2 values for λ are
found by projecting them uniformly on a log-scale on the range [λmin, λmax].
For α the values from 0.1 to 0.9 with an increase of 0.2 were used. For ρ we
used ρ = 1.5.

Classification And Regression Trees (CART)

To construct a regression tree the rpart implementation in R was used [10].
This implementation first constructs a binary tree by maximizing in each node
SST − (SSR +SSL), where SST is the sum of squared error of the entire tree,
and SSR and SSL are the sum of squared errors of the left and right branch
respectively. The tree constructions stops when further splits would violate a
constraint on the minimum number of observations in each node.

Second, the constructed tree is split into m sub-trees. Let R(T) be the risk

120

of tree T , which is the sum of squared error in the terminal nodes of T .
CART computes the risk of each sub-tree tree, which is defined by Rα(T) =
R(T) + α|T | using K-fold cross validation. The term α|T | is an additional
penalty on the size of the tree. The final tree is the sub-tree that minimizes
the average sum of squared error over the K-fold cross validation. The method
described here is referred to as the “ANOVA" method.

Alternatively, rpart also has the option to maximize the deviance DT − (DL+
DR), where D is the within node deviance assuming that the response origi-
nates from a Poisson distribution. To find an appropriate value for α, a grid
search was applied using α ∈ {0.001, 0.01, 0.1, 0.3}, both for the ANOVA and
Poisson models.

Random Forest

A Random Forest model was produced using the RandomForest package in
R [150]. Random Forest constructs T unpruned regression trees Ti, where in
each split only d randomly chosen predictors are considered. A prediction ŷi
is then created by ŷi = 1

T

∑T
i=1 Ti(x), thus the average over all trees. To find

the appropriate number of trees, a grid search was applied using 50, 100 and
500 trees. Furthermore, at each split, 61 randomly sampled attributes were
considered.

Support Vector Regression

Support Vector Regression is the regression alternative of Support Vector Ma-
chines. Given the linear regression problem: yi = wTxi + b + ε, SVR at-
tempts to find the flattest hyperplane wTxi + b such that for all data points
i = 1, . . . , N we have |yi − (wTxi + b)| < ε. Also incorporating slack variables
ζi and ζ∗i , the problem can be described as (6.4).

min 1
2 |w||

2 + C

n∑
i=1

(ζi + ζ∗i)

s.t. yi −wTxi − b ≤ ε+ ζi, i = 1, . . . , N
wTxi + b− yi ≤ ε+ ζ∗i , i = 1, . . . , N

ζi, ζ
∗
i ≥ 0

(6.4)

Since the solution to (6.4) only depends on inner products between vectors
xi, the problem can be transformed into a higher dimension without much

121

extra computation using kernels [211]. For the computation of the SVR, the R
kernlab package was used [125]. Although in this study initially both a linear
kernel (hence no kernel), and the RBF kernel: κ(xi, xj) = exp

(
− ||xi−xj ||2

2σ2

)
were considered, not using a kernel had a large negative effect on the runtime
and was therefore disregarded. To find appropriate values for ε and C a grid
search was applied using: ε ∈ {0.01, 0.1, 1} and C ∈ {1, 10}

Artificial Neural Networks

In this study we considered a feed-forward Artificial Neural Network with a
single hidden layer. To find the weights the nnet R package was used, which
utilizes an L-BFGS algorithm to find the appropriate weights [155, 200]. A
grid search was applied to find an appropriate number of units in the hidden
layer. During the grid search 1, 5, 10, 30, and 50 hidden units were considered.

6.5.3 Method evaluation
To evaluate the quality of predictive models, two scenarios were distinguished.
The first scenario assumes that application rates in weeks prior to the predict-
ing period are known, which is comparable to predicting one week ahead. The
second scenario assumes these application rates to be absent, and is more com-
parable to predicting 2 to 12 weeks ahead. These two scenarios are indicated
by including PAR, and excluding PAR.

To evaluate the quality of the predictions, two error measures are used: the
Root Mean Squared Error (RMSE), and the determination coefficient (R2). A
10-fold cross validation was applied to obtain accurate estimates for the quality
of the predictions over the training set in both scenarios. Furthermore, a final
prediction over the test set was made using the model showing the best results
over the training set to estimate out of sample performance.

6.6 Results

Method comparison Table 6.1 shows the best results per model when ap-
plying a 10-fold cross validation on the training set. The table indicates that
Random Forest produced the best results, both when predicting with and
without PAR. Table 6.1 also indicates that multiple methods such as artifi-
cial neural networks without PAR, Poisson elastic net and Tweedie elastic net
with PAR did not produce accurate results. Furthermore, Table 6.1 indicates

122

that the added value of including previous application rates into the model is
relatively small. Therefore, the predictive model would only produce slightly
better results when predicting short term (1 week), in comparison to prediction
long term (2 to 12 weeks).

Table 6.1: Results 10-fold cross validation

Best RMSE Best R2 Best RMSE Best R2

including including excluding excluding
Method PAR PAR PAR PAR
Linear elastic net 11.82 0.35 11.87 0.34
Poisson elastic net 15.53 0 NA NA
CART ANOVA 10.72 0.46 11.12 0.42
CART Poisson 10.17 0.52 10.75 0.46
Random Forest 9.38 0.59 9.93 0.54
Tweedie elastic net 13.86 0.03 11.62 0.37
SVR 10.58 0.46 11.28 0.41
ANN 11.14 0.42 17.35 0

When considering the quality of the models indicated in Table 6.1 we note
that the RMSE is largely influenced by some large application rates that are
difficult to predict. This can also be derived from the errors the Random
Forest model makes on the test set (Figure 6.2). In fact, 90% of the errors are
smaller than 9.63, and the average absolute error over this 90% is 2.43.

While predicting the application rate, also the predictive value of online mar-
keting campaigns was considered. To determine the importance of these cam-
paigns, the following procedure was used. For each tree of the forest, the
reduction in the sum of squared error when splitting on one of the D ran-
domly selected attributes was computed. These reductions are summed up
over all trees for each variable to obtain an overall picture of the decrease in
residual sum of squares per predictor.

By comparing the reduction in the sum of squared error for each variable, a
comparison can be made between the effect of online marketing campaigns
and other attributes. From this comparison, we found that the effect of online
marketing campaigns on the the application rate is small. Most variance is
explained by predictors related to the application rate in prior weeks, the job
title, the current recruitment lead time, and the contractual hours required.
However, in contrast to the model predicting the total number of applicants,

123

Error

D
en
si
ty

-150 -100 -50 0 50

0.
00

0.
05

0.
10

0.
15

Figure 6.2: Test set error with PAR

the online marketing campaigns do show a positive effect on the application
rate.

Test set evaluation Since Random Forest produced the most promising
results when applying 10-fold cross validation this model was evaluated on the
test set. The results are shown is Table 6.2, whereas the distribution of the
error on the test set is given in Figure 6.2. The quality of the prediction was
slightly worse than the average error obtained from 10-fold cross validation.
Furthermore, just as the training set also the test set contained some large
application rates that had a large negative effect on the RMSE.

6.7 Conclusion

This chapter considered the predictability of the number of weekly applications
per vacancy, and to what extent this metric can be controlled. To study this
question, a dataset from a large Dutch organization employing more than
30,000 employees was used. To predict the number of weekly applications per
vacancy, multiple machine learning methods were applied. Random Forest
returned the best results, with a root mean squared error of 9.38 and 9.93

124

Table 6.2. Results applying Random Forest on test set

Performance metric Value including PAR Value excluding PAR
MAE 5.25 6.35
MSE 100.44 123.99
RMSE 10.02 11.13
Residual mean 1.53 1.81
Residual sd 9.90 10.98
R2 0.44 0.32

when the predictors included and excluded application rates in weeks prior to
the predicted week.

From closer examination of the errors two conclusions can be drawn. First,
even though the predictions are quite accurate in most situations, i.e., have an
error of less than 5 applicants, some vacancies can attract a large number of
job seekers that the model finds hard to predict. As a result, it will be more
difficult to act on these predictions. On the other hand, both the predictions
and insights into the variability of these predictions are helpful to manage
the expectations recruiters and hiring managers might have when publishing
a vacancy. In particular, recruiters should manage vacancies expecting a large
number of applications carefully to avoid an excess of applications.

Second, from analyzing the effect of online marketing campaigns on the number
of applications per vacancy per week, we found this effect to be small but
positive. Also, it is likely that when estimating the effect of online marketing
campaigns from historic data, this effect will be biased. Vacancies that do
not attract many applications are more likely to be used in online marketing
campaigns, and there might be collinearity between the campaigns. Therefore,
we were not able to draw a clear conclusion on the effect of online marketing
campaigns, and how this can be used to control the number of applications.

125

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, Xiaoqiang Zheng, and Google
Brain. Tensorflow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation,
pages 265–283, 2016.

[2] Lydia Abbot, Ryan Batty, and Stephanie Bevegni. Global Recruiting
Trends 2016, 2015. URL: https://business.linkedin.com/content/
dam/business/talent-solutions/global/en_us/c/pdfs/GRT16_
GlobalRecruiting_100815.pdf, last accessed: October 2021.

[3] Fabian Abel, András Benczúr, Daniel Kohlsdorf, Martha Larson, and
Róbert Pálovics. Recsys challenge 2016: Job recommendations. In Pro-
ceedings of the 10th ACM Conference on Recommender Systems, RecSys
’16, pages 425–426. ACM, 2016.

[4] Fabian Abel, Yashar Deldjoo, Mehdi Elahi, and Daniel Kohlsdorf. Rec-
Sys challenge 2017: Offline and online evaluation. In Proceedings of
the eleventh ACM Conference on Recommender Systems, pages 372–373,
2017.

[5] Charu C. Aggarwal. Recommender systems. Springer, 2016.

[6] Shibbir Ahmed, Mahamudul Hasan, Md. Nazmul Hoq, and Muham-
mad Abdullah Adnan. User interaction analysis to recommend suitable
jobs in career-oriented social networking sites. In 2016 International

127

Conference on Data and Software Engineering (ICoDSE), pages 1–6.
IEEE, 2016.

[7] Shaha T. Al-Otaibi and Mourad Ykhlef. A survey of job recommender
systems. International Journal of Physical Sciences, 7(29):5127–5142,
2012.

[8] Nikolaos D Almalis, George A Tsihrintzis, and Evangelos Kyritsis. A
constraint-based job recommender system integrating FoDRA. Inter-
national Journal of Computational Intelligence Studies, 7(2):103–123,
2018.

[9] Dhruv Arya, Viet Ha-Thuc, and Shakti Sinha. Personalized federated
search at Linkedin. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, pages 1699–
1702, 2015.

[10] Elizabeth J. Atkinson and Terry M. Therneau. An introduction to recur-
sive partitioning using the rpart routines. Rochester: Mayo Foundation,
2000.

[11] Raju Balakrishnan and Subbarao Kambhampati. Optimal ad-ranking for
profit maximization. In Proceedings of the 11th International Workshop
on the Web and Databases. ACM, 2008.

[12] Jack Bandy. Problematic machine behavior: A systematic literature re-
view of algorithm audits. Proceedings of the ACM on Human-Computer
Interaction, 5(CSCW1):1–34, 2021.

[13] Shivam Bansal, Aman Srivastava, and Anuja Arora. Topic modeling
driven content based jobs recommendation engine for recruitment in-
dustry. Procedia computer science, 122:865–872, 2017.

[14] Mathieu Bastian, Matthew Hayes, William Vaughan, Sam Shah, Pe-
ter Skomoroch, Hyungjin Kim, Sal Uryasev, and Christopher Lloyd.
LinkedIn skills: large-scale topic extraction and inference. In Proceedings
of the 8th ACM Conference on Recommender systems, pages 1–8, 2014.

[15] Zeynep Batmaz, Ali Yurekli, Alper Bilge, and Cihan Kaleli. A review
on deep learning for recommender systems: challenges and remedies.
Artificial Intelligence Review, 52(1):1–37, 2019.

[16] Yoshua Bengio and Paolo Frasconi. An input output hmm architec-
ture. In Advances in neural information processing systems (NIPS),
pages 427–434, 1995.

128

[17] Alan Mark Berg. The learning analytics architectural lifecycle. 2018.

[18] Shuqing Bian, Wayne Xin Zhao, Yang Song, Tao Zhang, and Ji-Rong
Wen. Domain adaptation for person-job fit with transferable deep global
match network. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages
4812–4822, 2019.

[19] Shuqing Bian, Xu Chen, Wayne Xin Zhao, Kun Zhou, Yupeng Hou,
Yang Song, Tao Zhang, and Ji-Rong Wen. Learning to match jobs with
resumes from sparse interaction data using multi-view co-teaching net-
work. In Proceedings of the 29th ACM International Conference on In-
formation & Knowledge Management, pages 65–74, 2020.

[20] Mattia Bianchi, Federico Cesaro, Filippo Ciceri, Mattia Dagrada, Al-
berto Gasparin, Daniele Grattarola, Ilyas Inajjar, Alberto Maria Metelli,
and Leonardo Cella. Content-based approaches for cold-start job recom-
mendations. In RecSys Challenge ’17: Proceedings of the Recommender
Systems Challenge 2017, pages 1–5. 2017.

[21] Christopher M. Bishop. Pattern recognition and machine learning.
Springer, 2006.

[22] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov.
A neural click model for web search. In Proceedings of the 25th Interna-
tional Conference on World Wide Web, pages 531–541, 2016.

[23] Alexey Borisov, Martijn Wardenaar, Ilya Markov, and Maarten de Rijke.
A click sequence model for web search. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval,
pages 45–54, 2018.

[24] Fedor Borisyuk, Liang Zhang, and Krishnaram Kenthapadi. LiJAR: A
system for job application redistribution towards efficient career market-
place. In Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 1397–1406, 2017.

[25] Paul Boselie. Strategic human resource management: A balanced ap-
proach. McGraw-Hill Education, 2010.

[26] Svetlin Bostandjiev, John O’Donovan, and Tobias Höllerer. LinkedVis:
exploring social and semantic career recommendations. In Proceedings

129

of the 2013 international conference on Intelligent user interfaces, pages
107–116, 2013.

[27] Milan Bouchet-Valat. Package ‘SnowballC’. https://cran.r-project.
org/web/packages/SnowballC/index.html, 2019. retrieved: Septem-
ber 2021.

[28] Phillip W Braddy, Adam W Meade, and Christina M Kroustalis. Or-
ganizational recruitment website effects on viewers’ perceptions of orga-
nizational culture. Journal of Business and Psychology, 20(4):525–543,
2006.

[29] David Brown. Unwanted online job seekers swamp HR staff. Canadian
HR reporter, 17(7):1–2, 2004.

[30] Robin Burke. Hybrid recommender systems: Survey and experiments.
User Modeling and User-Adapted Interaction, 12(4):331–370, 2002.

[31] Ricardo J.G.B. Campello, Davoud Moulavi, and Jörg Sander. Density-
based clustering based on hierarchical density estimates. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 160–172.
Springer, 2013.

[32] Ricardo J.G.B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg
Sander. Hierarchical density estimates for data clustering, visualization,
and outlier detection. ACM Transactions on Knowledge Discovery from
Data (TKDD), 10(1):1–51, 2015.

[33] Michal Campr and Karel Ježek. Comparing semantic models for evalu-
ating automatic document summarization. In International Conference
on Text, Speech, and Dialogue, pages 252–260. Springer, 2015.

[34] CareerBuilder. Website CareerBuilder, 2021. Retrieved from: https:
//www.careerbuilder.com, last accessed: October 2021.

[35] Tommaso Carpi, Marco Edemanti, Ervin Kamberoski, Elena Sacchi,
Paolo Cremonesi, Roberto Pagano, and Massimo Quadrana. Multi-stack
ensemble for job recommendation. In RecSys Challenge ’16: Proceedings
of the Recommender Systems Challenge, pages 1–4. 2016.

[36] Wayne F. Cascio and Herman Aguinis. Applied psychology in human
resource management. Prentice Hall, 1998.

[37] Wayne F. Cascio and John Boudreau. Investing in people: Financial
impact of human resource initiatives. FT Press, 2010.

130

[38] CBS. Maatwerk - Banen van werknemers naar baanduur,
2018. Retrieved from: https://cbs.nl/nl-nl/maatwerk/2018/17/
maatwerk-banen-van-werknemers-naar-baanduur, last accessed: Oc-
tober 2021.

[39] Duygu Çelik and Atilla Elçi. An ontology-based information extraction
approach for résumés. In Joint International Conference on Pervasive
Computing and the Networked World, pages 165–179. Springer, 2012.

[40] Olivier Chapelle and Ya Zhang. A dynamic bayesian network click model
for web search ranking. In Proceedings of the 18th international confer-
ence on World wide web, pages 1–10. ACM, 2009.

[41] Le Chen, Ruijun Ma, Anikó Hannák, and Christo Wilson. Investigating
the impact of gender on rank in resume search engines. In Proceedings of
the 2018 chi conference on human factors in computing systems, pages
1–14, 2018.

[42] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 785–794, 2016.

[43] Weijian Chen, Xingming Zhang, Haoxiang Wang, and Hongjie Xu. Hy-
brid deep collaborative filtering for job recommendation. In 2017 2nd
IEEE International Conference on Computational Intelligence and Ap-
plications (ICCIA), pages 275–280. IEEE, 2017.

[44] Wenbo Chen, Pan Zhou, Shaokang Dong, Shimin Gong, Menglan Hu,
Kehao Wang, and Dapeng Wu. Tree-based contextual learning for online
job or candidate recommendation with big data support in professional
social networks. IEEE Access, 6:77725–77739, 2018.

[45] Oualid Chenni, Yanis Bouda, Hamid Benachour, and Chahnez Zakaria.
A content-based recommendation approach using semantic user profile
in e-recruitment. In International Conference on Theory and Practice of
Natural Computing, pages 23–32. Springer, 2015.

[46] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and
Yoshua Bengio. On the properties of neural machine translation:
Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[47] Andrew Cholakian. A Gentle Intro to Function Scoring, 2014. Retrieved
from: https://www.elastic.co/blog/found-function-scoring, last
accessed: October 2021.

131

[48] Yi-Chi Chou and Han-Yen Yu. Based on the application of AI technology
in resume analysis and job recommendation. In 2020 IEEE International
Conference on Computational Electromagnetics (ICCEM), pages 291–
296. IEEE, 2020.

[49] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. Click models
for web search. Synthesis Lectures on Information Concepts, Retrieval,
and Services, 7(3):1–115, 2015.

[50] CIKM. CIKM Cup 2016 Track 1: Cross-Device Entity Linking Chal-
lenge, 2016. Retrieved from: https://competitions.codalab.org/
competitions/11171, last accessed: October 2021.

[51] Clickmodels. Clickmodels Github repository. https://github.com/
varepsilon/clickmodels, last accessed: October 2021.

[52] Dominic Coey and Michael Bailey. People and cookies: Imperfect treat-
ment assignment in online experiments. In Proceedings of the 25th Inter-
national Conference on World Wide Web, pages 1103–1111. International
World Wide Web Conferences Steering Committee, 2016.

[53] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An ex-
perimental comparison of click position-bias models. In Proceedings of
the 2008 international conference on web search and data mining, pages
87–94, 2008.

[54] Françoise Dany and Véronique Torchy. Recruitment and selection in
Europe policies, practices and methods 1. In Policy and practice in
European human resource management, pages 68–88. Routledge, 2017.

[55] Anirban Dasgupta, Maxim Gurevich, Liang Zhang, Belle Tseng, and
Achint O. Thomas. Overcoming browser cookie churn with clustering.
In Proceedings of the fifth ACM international conference on Web search
and data mining, pages 83–92. ACM, 2012.

[56] Vachik S. Dave, Baichuan Zhang, Mohammad Al Hasan, Khalifeh Al-
Jadda, and Mohammed Korayem. A combined representation learning
approach for better job and skill recommendation. In Proceedings of
the 27th ACM International Conference on Information and Knowledge
Management, pages 1997–2005, 2018.

[57] Toon De Pessemier, Kris Vanhecke, and Luc Martens. A scalable, high-
performance algorithm for hybrid job recommendations. In RecSys Chal-

132

lenge ’16: Proceedings of the Recommender Systems Challenge, pages
1–4. 2016.

[58] Corné de Ruijt and Bhulai. Detecting users from website sessions: A
simulation study and results on multiple simulation scenarios. Interna-
tional Journal On Advances in Internet Technology 14, Number 1 & 2,
2021 (forthcoming), 2021.

[59] Corné de Ruijt and Sandjai Bhulai. Detecting users from website ses-
sions: A simulation study. In DATA ANALYTICS 2020, The Ninth
International Conference on Data Analytics, pages 35–40, 2020.

[60] Corné de Ruijt and Sandjai Bhulai. GCM Github repository, 2021.
https://github.com/cornederuijtnw/GCM, last accessed: October,
2021.

[61] Corné de Ruijt and Sandjai Bhulai. gecasmo package, 2021. https:
//pypi.org/project/gecasmo/, last accessed: October, 2021.

[62] Corné de Ruijt and Sandjai Bhulai. The generalized cascade click
model: A unified framework for estimating click models. arXiv preprint
arXiv:2111.11314, 2021.

[63] Corné de Ruijt and Sandjai Bhulai. Job recommender systems: A review.
arXiv preprint arXiv:2111.13576, 2021.

[64] Corné de Ruijt and Sandjai Bhulai. A comparison of machine-learned
survival models for predicting tenure from unstructured resumes. In
DATA ANALYTICS 2021, The Tenth International Conference on Data
Analytics, 2021. Forthcoming.

[65] Corné de Ruijt, Sandjai Bhulai, Han Rusman, and Leon Willemsens.
Predicting candidate uptake for online vacancies. DATA ANALYTICS
2016, The Fifth International Conference on Data Analytics, pages 63–
68, 2016.

[66] Corné de Ruijt, Sandjai Bhulai, Bram L. Gorissen, Han Rusman, and
Leon Willemsens. Predicting candidate uptake on individual online va-
cancies and vacancy portfolios. International Journal on Advances in
Software Volume 10, Number 1 & 2, 2017, 2017.

[67] Weiwei Deng, Xiaoliang Ling, Yang Qi, Tunzi Tan, Eren Manavoglu, and
Qi Zhang. Ad click prediction in sequence with long short-term memory
networks: an externality-aware model. In The 41st International ACM

133

SIGIR Conference on Research & Development in Information Retrieval,
pages 1065–1068, 2018.

[68] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[69] Mamadou Diaby and Emmanuel Viennet. Taxonomy-based job recom-
mender systems on Facebook and LinkedIn profiles. In 2014 IEEE Eighth
International Conference on Research Challenges in Information Science
(RCIS), pages 1–6. IEEE, 2014.

[70] Mamadou Diaby, Emmanuel Viennet, and Tristan Launay. Toward the
next generation of recruitment tools: an online social network-based job
recommender system. In 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2013),
pages 821–828. IEEE, 2013.

[71] Mamadou Diaby, Emmanuel Viennet, and Tristan Launay. Exploration
of methodologies to improve job recommender systems on social net-
works. Social Network Analysis and Mining, 4(1):227, 2014.

[72] Roberto Díaz-Morales. Cross-device tracking: Matching devices and
cookies. In 2015 IEEE International Conference on Data Mining Work-
shop (ICDMW), pages 1699–1704. IEEE, 2015.

[73] Giacomo Domeniconi, Gianluca Moro, Andrea Pagliarani, Karin Pasini,
and Roberto Pasolini. Job recommendation from semantic similarity of
LinkedIn users’ skills. In International Conference on Pattern Recogni-
tion Applications and Methods (ICPRAM), pages 270–277, 2016.

[74] Shaokang Dong, Zijian Lei, Pan Zhou, Kaigui Bian, and Guanghui Liu.
Job and candidate recommendation with big data support: A contex-
tual online learning approach. In GLOBECOM 2017-2017 IEEE Global
Communications Conference, pages 1–7. IEEE, 2017.

[75] Georges Dupret and Mounia Lalmas. Absence time and user engagement:
evaluating ranking functions. In Proceedings of the sixth ACM interna-
tional conference on Web search and data mining, pages 173–182. ACM,
2013.

[76] Georges E. Dupret and Benjamin Piwowarski. A user browsing model to
predict search engine click data from past observations. In Proceedings of

134

the 31st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 331–338. ACM, 2008.

[77] ELISE. Website ELISE Job Matching Search and Match Platform,
2021. Retrieved from: https://www.wcc-group.com/employment/
products/elise-job-matching-search-and-match-platform/, last
accessed: October 2021.

[78] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In Kdd, volume 96, pages 226–231, 1996.

[79] Daniel Falbel, JJ Allaire, Françios Chollet, RStudio, Google, Yuan Tang,
Wouter Van Der Bijl, Martin Studer, and Sigrid Keydana. Package
‘keras’, 2019. URL https://keras.rstudio.com. R package version
2.2.4.1.

[80] Evanthia Faliagka, Lazaros Iliadis, Ioannis Karydis, Maria Rigou, Spyros
Sioutas, Athanasios Tsakalidis, and Giannis Tzimas. On-line consistent
ranking on e-recruitment: seeking the truth behind a well-formed cv.
Artificial Intelligence Review, 42(3):515–528, 2014.

[81] Alexander Felfernig, Michael Jeran, Gerald Ninaus, Florian Reinfrank,
and Stefan Reiterer. Toward the next generation of recommender sys-
tems: applications and research challenges. In Multimedia services in
intelligent environments, pages 81–98. Springer, 2013.

[82] Peter Flach. Machine learning: the art and science of algorithms that
make sense of data. Cambridge University Press, 2012.

[83] Daniel Fleder and Kartik Hosanagar. Blockbuster culture’s next rise or
fall: The impact of recommender systems on sales diversity. Management
science, 55(5):697–712, 2009.

[84] Mauricio Noris Freire and Leandro Nunes de Castro. e-recruitment rec-
ommender systems: a systematic review. Knowledge and Information
Systems, pages 1–20, 2020.

[85] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization
paths for generalized linear models via coordinate descent. Journal of
statistical software, 33(1):1, 2010.

[86] Jerome H Friedman. Stochastic gradient boosting. Computational statis-
tics & data analysis, 38(4):367–378, 2002.

135

[87] Michael F Gensheimer and Balasubramanian Narasimhan. A scalable
discrete-time survival model for neural networks. PeerJ, 7:e6257, 2019.
URL https://doi.org/10.7717/peerj.6257.

[88] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi.
Fairness-aware ranking in search & recommendation systems with ap-
plication to linkedin talent search. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 2221–2231, 2019.

[89] Philip Gibson and Jennifer Swift. e2c: Maximising electronic resources
for cruise recruitment. Journal of Hospitality and Tourism Management,
18(01):61–69, 2011.

[90] R Greenspan. Job seekers have choices, 2003. URL: https://www.
clickz.com/job-seekers-have-choices/76679/ last accessed: Octo-
ber 2021.

[91] Brandon Greenwell, Bradley Boehmke, and Jay Cunningham. Pack-
age ‘gbm’, 2019. URL https://github.com/gbm-developers/gbm. R
package version 2.1.5.

[92] Akshay Gugnani and Hemant Misra. Implicit skills extraction using
document embedding and its use in job recommendation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 34, pages
13286–13293, 2020.

[93] Huan Gui, Haishan Liu, Xiangrui Meng, Anmol Bhasin, and Jiawei Han.
Downside management in recommender systems. In Advances in Social
Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM Interna-
tional Conference on, pages 394–401. IEEE, 2016.

[94] Cheng Guo, Hongyu Lu, Shaoyun Shi, Bin Hao, Bin Liu, Min Zhang,
Yiqun Liu, and Shaoping Ma. How integration helps on cold-start recom-
mendations. In RecSys Challenge ’17: Proceedings of the Recommender
Systems Challenge 2017, pages 1–6. 2017.

[95] Fan Guo, Chao Liu, and Yi Min Wang. Efficient multiple-click models in
web search. In Proceedings of the Second ACM International Conference
on Web Search and Data Mining, pages 124–131, 2009.

[96] Xingsheng Guo, Houssem Jerbi, and Michael P. O’Mahony. An analysis
framework for content-based job recommendation. In 22nd International
Conference on Case-Based Reasoning (ICCBR), 2014.

136

[97] Anika Gupta and Deepak Garg. Applying data mining techniques in job
recommender system for considering candidate job preferences. In 2014
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), pages 1458–1465. IEEE, 2014.

[98] Gus. Website Gus, 2017. Retrieved from: https://www.gus.nl, last
accessed: October 2021.

[99] Francisco Gutiérrez, Sven Charleer, Robin De Croon, Nyi Nyi Htun,
Gerd Goetschalckx, and Katrien Verbert. Explaining and explor-
ing job recommendations: a user-driven approach for interacting with
knowledge-based job recommender systems. In Proceedings of the 13th
ACM Conference on Recommender Systems, pages 60–68, 2019.

[100] Rob Hartgers. Kan een computerprogramma uit duizenden sollicitanten
de beste kandidaten selecteren? Unilever denkt van wel., 2019. Retrieved
from: https://www.nu.nl/werk/5972368, last accessed: October 2021.

[101] Christopher J Hartwell. The use of social media in employee selection:
Prevalence, content, perceived usefulness, and influence on hiring deci-
sions. PhD thesis, Purdue University, 2015.

[102] Trevor Hastie and Junyang Qian. Glmnet Vignette, 2014. URL: http://
www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf, last
accessed: October 2021.

[103] Bradford Heap, Alfred Krzywicki, Wayne Wobcke, Mike Bain, and Paul
Compton. Combining career progression and profile matching in a job
recommender system. In Pacific Rim International Conference on Arti-
ficial Intelligence, pages 396–408. Springer, 2014.

[104] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[105] Peter W Hom, Thomas W Lee, Jason D Shaw, and John P Hausknecht.
One hundred years of employee turnover theory and research. Journal
of Applied Psychology, 102(3):530–545, 2017.

[106] Wenxing Hong, Siting Zheng, Huan Wang, and Jianchao Shi. A job
recommender system based on user clustering. Journal of Computers
(JCP), 8(8):1960–1967, 2013.

[107] Jose Ignacio Honrado, Oscar Huarte, Cesar Jimenez, Sebastian Ortega,
Jose R. Perez-Aguera, Joaquin Perez-Iglesias, Alvaro Polo, and Gabriel
Rodriguez. Jobandtalent at RecSys challenge 2016. In RecSys Challenge

137

’16: Proceedings of the Recommender Systems Challenge, pages 1–5.
2016.

[108] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of
classification, 2(1):193–218, 1985.

[109] ICDM. ICDM 2015: Drawbridge Cross-Device Connec-
tions, 2015. Retrieved from: https://www.kaggle.com/c/
icdm-2015-drawbridge-cross-device-connections, last accessed:
October 2021.

[110] Hemant Ishwaran and Udaya B Kogalur. Random Forests for Survival,
Regression, and Classification (RF-SRC), 2018. URL https://cran.
r-project.org/package=randomForestSRC. R package version 2.6.0.

[111] Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, and
Michael S Lauer. Random survival forests. The Annals of Applied Statis-
tics, pages 841–860, 2008.

[112] Leila Jalali, Misbah Khan, and Rahul Biswas. Learning and multi-
objective optimization for automatic identity linkage. In 2018 IEEE In-
ternational Conference on Big Data (Big Data), pages 4926–4931. IEEE,
2018.

[113] Dietmar Jannach, Gabriel de Souza P. Moreira, and Even Oldridge. Why
are deep learning models not consistently winning recommender systems
competitions yet? a position paper. RecSys Challenge’20, Proceedings
of the Recommender Systems Challenge 2020, page 44–49, 2020.

[114] Bernard J. Jansen, Karen J. Jansen, and Amanda Spink. Using the
web to look for work: Implications for online job seeking and recruiting.
Internet research, 15(1):49–66, 2005.

[115] Andrzej Janusz, Sebastian Stawicki, Michał Drewniak, Krzysztof
Ciebiera, Dominik Ślęzak, and Krzysztof Stencel. How to match jobs
and candidates - a recruitment support system based on feature engi-
neering and advanced analytics. In International Conference on Infor-
mation Processing and Management of Uncertainty in Knowledge-Based
Systems, pages 503–514. Springer, 2018.

[116] Stephen Jenkins. Survival Analysis, 2005.

[117] Junshu Jiang, Songyun Ye, Wei Wang, Jingran Xu, and Xiaosheng Luo.
Learning effective representations for person-job fit by feature fusion. In

138

Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, pages 2549–2556, 2020.

[118] Miao Jiang, Yi Fang, Huangming Xie, Jike Chong, and Meng Meng.
User click prediction for personalized job recommendation. World Wide
Web, 22(1):325–345, 2019.

[119] Di Jin, Mark Heimann, Ryan Rossi, and Danai Koutra. node2bits: Com-
pact time-and attribute-aware node representations. In ECML/PKDD
European Conference on Principles and Practice of Knowledge Discovery
in Databases, 2019.

[120] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and
Geri Gay. Accurately interpreting clickthrough data as implicit feedback.
In Proceedings of the ACM Conference on Research and Development on
Information Retrieval (SIGIR), pages 154–161. ACM, 2005.

[121] Anne Jonker, Corné de Ruijt, and Jornt de Gruijl. Bag & tag’em-a
new dutch stemmer. In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 3868–3876, 2020.

[122] Kaggle. Careerbuilder Job Recommendation Challenge, 2012. Re-
trieved from: https://www.kaggle.com/c/job-recommendation, last
accessed: October 2021.

[123] Kaggle. Kaggle website, 2021. Retrieved from: https://www.kaggle.
com, last accessed: October 2021.

[124] Can Karakaya, Hakan Toğuç, Rıdvan Salih Kuzu, and Ali Hakan
Büyüklü. Survey of cross device matching approaches with a case study
on a novel database. In 2018 3rd International Conference on Computer
Science and Engineering (UBMK), pages 139–144. IEEE, 2018.

[125] Alexandros Karatzoglou, Alex Smola, and Kurt Hornik. The kernlab
package, 2007. URL: https://cran.r-project.org/web/packages/
kernlab/kernlab.pdf, last accessed: October 2021.

[126] Jared Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates,
Tingting Jiang, and Yuval Kluger. Deep survival: A deep cox propor-
tional hazards network. ArXiv, abs/1606.00931, 2016.

[127] Krishnaram Kenthapadi, Benjamin Le, and Ganesh Venkataraman. Per-
sonalized job recommendation system at Linkedin: Practical challenges
and lessons learned. In Proceedings of the eleventh ACM conference on
recommender systems, pages 346–347, 2017.

139

[128] Rémy Kessler, Nicolas Béchet, Mathieu Roche, Juan-Manuel Torres-
Moreno, and Marc El-Bèze. A hybrid approach to managing job of-
fers and candidates. Information processing & management, 48(6):1124–
1135, 2012.

[129] Sungchul Kim, Nikhil Kini, Jay Pujara, Eunyee Koh, and Lise Getoor.
Probabilistic visitor stitching on cross-device web logs. In Proceedings
of the 26th International Conference on World Wide Web, pages 1581–
1589. International World Wide Web Conferences Steering Committee,
2017.

[130] Aseel B. Kmail, Mohammed Maree, and Mohammed Belkhatir. Match-
ingSem: Online recruitment system based on multiple semantic re-
sources. In 2015 12th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), pages 2654–2659. IEEE, 2015.

[131] Aseel B. Kmail, Mohammed Maree, Mohammed Belkhatir, and Saa-
dat M. Alhashmi. An automatic online recruitment system based on ex-
ploiting multiple semantic resources and concept-relatedness measures.
In 27th International Conference on Tools with Artificial Intelligence
(ICTAI), pages 620–627. IEEE, 2015.

[132] Tanja Koch, Charlene Gerber, and Jeremias J. De Klerk. The impact of
social media on recruitment: Are you linkedin? SA Journal of Human
Resource Management, 16(1), 2018.

[133] Sunil Kumar Kopparapu. Automatic extraction of usable information
from unstructured resumes to aid search. In 2010 IEEE International
Conference on Progress in Informatics and Computing, volume 1, pages
99–103. IEEE, 2010.

[134] Max Kuhn. Building predictive models in R using the caret package.
Journal of Statistical Software, 28(5):1–26, 2008.

[135] Emanuel Lacic, Markus Reiter-Haas, Tomislav Duricic, Valentin Slaw-
icek, and Elisabeth Lex. Should we embed? A study on the online
performance of utilizing embeddings for real-time job recommendations.
In Proceedings of the 13th ACM Conference on Recommender Systems,
pages 496–500, 2019.

[136] Emanuel Lacic, Markus Reiter-Haas, Dominik Kowald, Manoj Reddy
Dareddy, Junghoo Cho, and Elisabeth Lex. Using autoencoders for
session-based job recommendations. User Modeling and User-Adapted
Interaction, 30(4):617–658, 2020.

140

[137] Sven Laumer, Fabian Gubler, Christian Maier, and Tim Weitzel. Job
seekers’ acceptance of job recommender systems: Results of an empirical
study. In Proceedings of the 51st Hawaii International Conference on
System Sciences, pages 3914–3923, 2018.

[138] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In International conference on machine learning, pages
1188–1196, 2014.

[139] Ran Le, Wenpeng Hu, Yang Song, Tao Zhang, Dongyan Zhao, and Rui
Yan. Towards effective and interpretable person-job fitting. In Pro-
ceedings of the 28th ACM International Conference on Information and
Knowledge Management, pages 1883–1892, 2019.

[140] In Lee. The evolution of e-recruiting: A content analysis of fortune
100 career web sites. Journal of Electronic Commerce in Organizations
(JECO), 3(3):57–68, 2005.

[141] Yeon-Chang Lee, Jiwon Hong, and Sang-Wook Kim. Job recommenda-
tion in askstory: experiences, methods, and evaluation. In Proceedings
of the 31st Annual ACM Symposium on Applied Computing, pages 780–
786, 2016.

[142] Yujin Lee, Yeon-Chang Lee, Jiwon Hong, and Sang-Wook Kim. Ex-
ploiting job transition patterns for effective job recommendation. In
2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pages 2414–2419. IEEE, 2017.

[143] Vasily Leksin and Andrey Ostapets. Job recommendation based on fac-
torization machine and topic modelling. In RecSys Challenge ’16: Pro-
ceedings of the Recommender Systems Challenge, pages 1–4. 2016.

[144] Vasily Leksin, Andrey Ostapets, Mikhail Kamenshikov, Dmitry Kho-
dakov, and Vasily Rubtsov. Combination of content-based user profil-
ing and local collective embeddings for job recommendation. In CEUR
Workshop Proceeding, Vol. 1968, No. Experimental Economics and Ma-
chine Learning, pages 9–17, 2017.

[145] Huayu Li, Yong Ge, Hengshu Zhu, Hui Xiong, and Hongke Zhao.
Prospecting the career development of talents: A survival analysis per-
spective. In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 917–925. ACM,
2017.

141

[146] Jia Li, Dhruv Arya, Viet Ha-Thuc, and Shakti Sinha. How to get them
a dream job? entity-aware features for personalized job search ranking.
In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 501–510, 2016.

[147] Liangyue Li, How Jing, Hanghang Tong, Jaewon Yang, Qi He, and Bee-
Chung Chen. NEMO: Next career move prediction with contextual em-
bedding. In Proceedings of the 26th International Conference on World
Wide Web Companion, pages 505–513. International World Wide Web
Conferences Steering Committee, 2017.

[148] Jianxun Lian and Xing Xie. Cross-device user matching based on massive
browse logs: The runner-up solution for the 2016 CIKM cup. arXiv
preprint arXiv:1610.03928, 2016.

[149] Jianxun Lian, Fuzheng Zhang, Min Hou, Hongwei Wang, Xing Xie, and
Guangzhong Sun. Practical lessons for job recommendations in the cold-
start scenario. In RecSys Challenge ’17: Proceedings of the Recommender
Systems Challenge 2017, pages 1–6. 2017.

[150] Andy Liaw and Matthew Wiener. Classification and regression by ran-
domforest. R news, 2(3):18–22, 2002.

[151] Cynthia C.S. Liem, Markus Langer, Andrew Demetriou, An-
nemarie M.F. Hiemstra, Achmadnoer Sukma Wicaksana, Marise Ph.
Born, and Cornelius J. König. Psychology meets machine learning: In-
terdisciplinary perspectives on algorithmic job candidate screening. In
Explainable and Interpretable Models in Computer Vision and Machine
Learning, pages 197–253. Springer, 2018.

[152] D.Y. Lin. On the breslow estimator. Lifetime data analysis, 13(4):471–
480, 2007.

[153] Yiou Lin, Hang Lei, Prince Clement Addo, and Xiaoyu Li. Machine
learned resume-job matching solution. arXiv preprint arXiv:1607.07657,
2016.

[154] LinkedIn. About LinkedIn, 2021. Retrieved from: https://about.
linkedin.com, last accessed: October 2021.

[155] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method
for large scale optimization. Mathematical programming, 45(1-3):503–
528, 1989.

142

[156] Kuan Liu, Xing Shi, Anoop Kumar, Linhong Zhu, and Prem Natarajan.
Temporal learning and sequence modeling for a job recommender sys-
tem. In RecSys Challenge ’16: Proceedings of the Recommender Systems
Challenge, pages 1–4. 2016.

[157] Miao Liu, Zijie Zeng, Weike Pan, Xiaogang Peng, Zhiguang Shan, and
Zhong Ming. Hybrid one-class collaborative filtering for job recommen-
dation. In International Conference on Smart Computing and Commu-
nication, pages 267–276. Springer, 2016.

[158] Yiqun Liu, Xiaohui Xie, Chao Wang, Jian-Yun Nie, Min Zhang, and
Shaoping Ma. Time-aware click model. ACM Transactions on Informa-
tion Systems (TOIS), 35(3), 2016.

[159] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan
Zhang. Recommender system application developments: a survey. De-
cision Support Systems, 74:12–32, 2015.

[160] Yao Lu, Sandy El Helou, and Denis Gillet. A recommender system for job
seeking and recruiting website. In Proceedings of the 22nd International
Conference on World Wide Web, pages 963–966, 2013.

[161] Malte Ludewig, Michael Jugovac, and Dietmar Jannach. A light-weight
approach to recipient determination when recommending new items. In
RecSys Challenge ’17: Proceedings of the Recommender Systems Chal-
lenge 2017, pages 1–6. 2017.

[162] Cuauhtemoc Luna-Nevarez and Michael R. Hyman. Common practices
in destination website design. Journal of destination marketing & man-
agement, 1(1-2):94–106, 2012.

[163] Yong Luo, Huaizheng Zhang, Yonggang Wen, and Xinwen Zhang. Re-
sumeGAN: An optimized deep representation learning framework for
talent-job fit via adversarial learning. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
pages 1101–1110, 2019.

[164] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of machine learning research, 9(86):2579–2605, 2008.

[165] Saket Maheshwary and Hemant Misra. Matching resumes to jobs via
deep siamese network. In Companion Proceedings of the The Web Con-
ference 2018, pages 87–88, 2018.

143

[166] Emmanuel Malherbe, Mamadou Diaby, Mario Cataldi, Emmanuel Vien-
net, and Marie-Aude Aufaure. Field selection for job categorization and
recommendation to social network users. In 2014 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2014), pages 588–595. IEEE, 2014.

[167] Jochen Malinowski, Tobias Keim, Oliver Wendt, and Tim Weitzel.
Matching people and jobs: A bilateral recommendation approach. In
Proceedings of the 39th Annual Hawaii International Conference on Sys-
tem Sciences (HICSS’06), volume 6, pages 137c–137c. IEEE, 2006.

[168] Jorge Martinez-Gil, Alejandra Lorena Paoletti, and Mario Pichler. A
novel approach for learning how to automatically match job offers and
candidate profiles. Information Systems Frontiers, pages 1–10, 2019.

[169] Annet Maseland. Wie gaat er eerst? Flexmarkt, februari 2018, pages
24–27, 2018.

[170] Steven D Maurer and Yuping Liu. Developing effective e-recruiting web-
sites: Insights for managers from marketers. Business horizons, 50(4):
305–314, 2007.

[171] Leland McInnes and John Healy. Accelerated hierarchical density clus-
tering. arXiv preprint arXiv:1705.07321, 2017.

[172] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical
density based clustering. The Journal of Open Source Software, 2(11),
mar 2017. doi: 10.21105/joss.00205. URL https://doi.org/10.21105%
2Fjoss.00205.

[173] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[174] Sonu K. Mishra and Manoj Reddy. A bottom-up approach to job rec-
ommendation system. In RecSys Challenge ’16: Proceedings of the Rec-
ommender Systems Challenge, pages 1–4. 2016.

[175] Ulla B. Mogensen, Hemant Ishwaran, and Thomas A. Gerds. Evaluat-
ing random forests for survival analysis using prediction error curves.
Journal of Statistical Software, 50(11):1–23, 2012.

[176] George D. Montanez, Ryen W. White, and Xiao Huang. Cross-device
search. In Proceedings of the 23rd ACM International Conference on

144

Conference on Information and Knowledge Management, pages 1669–
1678. ACM, 2014.

[177] Motebang Daniel Mpela and Tranos Zuva. A mobile proximity job em-
ployment recommender system. In 2020 International Conference on
Artificial Intelligence, Big Data, Computing and Data Communication
Systems (icABCD), pages 1–6. IEEE, 2020.

[178] Kevin P. Murphy and Stuart Russell. Dynamic bayesian networks: rep-
resentation, inference and learning. PhD thesis, 2002.

[179] F. M. Naini, J. Unnikrishnan, P. Thiran, and M. Vetterli. Where you are
is who you are: User identification by matching statistics. IEEE Trans-
actions on Information Forensics and Security, 11(2):358–372, 2016.

[180] Amber Nigam, Aakash Roy, Hartaran Singh, and Harsimran Waila. Job
recommendation through progression of job selection. In 2019 IEEE 6th
International Conference on Cloud Computing and Intelligence Systems
(CCIS), pages 212–216. IEEE, 2019.

[181] Lukasz Olejnik, Claude Castelluccia, and Artur Janc. On the uniqueness
of web browsing history patterns. annals of telecommunications-annales
des télécommunications, 69(1-2):63–74, 2014.

[182] Cathy O’neil. Weapons of math destruction: How big data increases
inequality and threatens democracy. Crown, 2016.

[183] O*Net. O*Net, 2021. Retrieved from: https://www.onetonline.org,
last accessed: October 2021.

[184] Andrzej Pacuk, Piotr Sankowski, Karol Węgrzycki, Adam Witkowski,
and Piotr Wygocki. RecSys challenge 2016: job recommendations based
on preselection of offers and gradient boosting. In RecSys Challenge ’16:
Proceedings of the Recommender Systems Challenge, pages 1–4. 2016.

[185] Ioannis Paparrizos, B. Barla Cambazoglu, and Aristides Gionis. Machine
learned job recommendation. In Proceedings of the fifth ACM conference
on Recommender systems, pages 325–328. ACM, 2011.

[186] Emma Parry and Shaun Tyson. An analysis of the use and success of
online recruitment methods in the uk. Human Resource Management
Journal, 18(3):257–274, 2008.

[187] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

145

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[188] Caroline Criado Perez. Invisible women: Exposing data bias in a world
designed for men. Random House, 2019.

[189] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contex-
tualized word representations. In Proceedings of the 2018 conference of
the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (long papers), pages 2227–2237,
2018.

[190] Minh C. Phan, Yi Tay, and Tuan-Anh Nguyen Pham. Cross device
matching for online advertising with neural feature ensembles: First
place solution at CIKM cup 2016, 2016.

[191] Minh C. Phan, Aixin Sun, and Yi Tay. Cross-device user linking: URL,
session, visiting time, and device-log embedding. In Proceedings of the
40th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 933–936. ACM, 2017.

[192] Marc Poch, Núria Bel Rafecas, Sergio Espeja, and Felipe Navio. Rank-
ing job offers for candidates: learning hidden knowledge from big data.
In Proceedings of the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014). ACL (Association for Computa-
tional Linguistics), 2014.

[193] Mirko Polato and Fabio Aiolli. A preliminary study on a recommender
system for the job recommendation challenge. In RecSys Challenge ’16:
Proceedings of the Recommender Systems Challenge, pages 1–4. 2016.

[194] PyClick. PyClick Github repository. https://github.com/markovi/
PyClick, last accessed: October 2021.

[195] Wei Qian, Yi Yang, and Hui Zou. Tweedie’s compound poisson model
with grouped elastic net. Journal of Computational and Graphical Statis-
tics, 25(2):606–625, 2016.

[196] Chuan Qin, Hengshu Zhu, Tong Xu, Chen Zhu, Liang Jiang, Enhong
Chen, and Hui Xiong. Enhancing person-job fit for talent recruitment:
An ability-aware neural network approach. In The 41st international

146

ACM SIGIR conference on research & development in information re-
trieval, pages 25–34, 2018.

[197] Chuan Qin, Hengshu Zhu, Tong Xu, Chen Zhu, Chao Ma, Enhong Chen,
and Hui Xiong. An enhanced neural network approach to person-job fit in
talent recruitment. ACM Transactions on Information Systems (TOIS),
38(2):1–33, 2020.

[198] Michael Reusens, Wilfried Lemahieu, Bart Baesens, and Luc Sels. A note
on explicit versus implicit information for job recommendation. Decision
Support Systems, 98:26–35, 2017.

[199] Michael Reusens, Wilfried Lemahieu, Bart Baesens, and Luc Sels. Evalu-
ating recommendation and search in the labor market. Knowledge-Based
Systems, 152:62–69, 2018.

[200] Brian Ripley and William Venables. Package ‘nnet’, 2016. URL: https:
//cran.r-project.org/web/packages/nnet/nnet.pdf, last accessed:
October 2021.

[201] Alberto Rivas, Pablo Chamoso, Alfonso González-Briones, Roberto
Casado-Vara, and Juan Manuel Corchado. Hybrid job offer recommender
system in a social network. Expert Systems, 36(4):e12416, 2019.

[202] Jean-François Rouet, Andrew Dillon, Jarmo J Levonen, and Rand J
Spiro. Hypertext and cognition. Psychology Press, 1996.

[203] Rishiraj Saha Roy, Ritwik Sinha, Niyati Chhaya, and Shiv Saini. Proba-
bilistic deduplication of anonymous web traffic. In Proceedings of the 24th
International Conference on World Wide Web, pages 103–104. ACM,
2015.

[204] Masahiro Sato, Koki Nagatani, and Takuji Tahara. Exploring an optimal
online model for new job recommendation: Solution for RecSys challenge
2017. In RecSys Challenge ’17: Proceedings of the Recommender Systems
Challenge 2017, pages 1–5. 2017.

[205] Thomas Schmitt, Philippe Caillou, and Michele Sebag. Matching jobs
and resumes: a deep collaborative filtering task. In GCAI 2016. 2nd
Global Conference on Artificial Intelligence, volume 41, 2016.

[206] Thomas Schmitt, François Gonard, Philippe Caillou, and Michèle Sebag.
Language modelling for collaborative filtering: Application to job appli-
cant matching. In 2017 IEEE 29th International Conference on Tools
with Artificial Intelligence (ICTAI), pages 1226–1233. IEEE, 2017.

147

[207] Walid Shalaby, BahaaEddin AlAila, Mohammed Korayem, Layla Pour-
najaf, Khalifeh AlJadda, Shannon Quinn, and Wlodek Zadrozny. Help
me find a job: A graph-based approach for job recommendation at scale.
In 2017 IEEE international conference on big data (big data), pages
1544–1553. IEEE, 2017.

[208] Saman Shishehchi and Seyed Yashar Banihashem. Jrdp: a job recom-
mender system based on ontology for disabled people. International
Journal of Technology and Human Interaction (IJTHI), 15(1):85–99,
2019.

[209] Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Reg-
ularization paths for Cox’s proportional hazards model via coordinate
descent. Journal of Statistical Software, 39(5):1–13, 2011.

[210] Zheng Siting, Hong Wenxing, Zhang Ning, and Yang Fan. Job recom-
mender systems: a survey. In 2012 7th International Conference on
Computer Science & Education (ICCSE), pages 920–924. IEEE, 2012.

[211] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector
regression. Statistics and computing, 14(3):199–222, 2004.

[212] LinkedIn Talent Solutions. LinkedIn 2020 Global Talent Trends,
2020. Retrieved from: https://business.linkedin.com/
talent-solutions/recruiting-tips/global-talent-trends-2020,
last accessed: October 2021.

[213] Rongwei Song, Siding Chen, Bailong Deng, and Li Li. eXtreme gra-
dient boosting for identifying individual users across different digital
devices. In International Conference on Web-Age Information Manage-
ment, pages 43–54. Springer, 2016.

[214] Stefan Strohmeier and Franca Piazza. Domain driven data mining in hu-
man resource management: A review of current research. Expert Systems
with Applications, 40(7):2410–2420, 2013.

[215] Studo. Website Studo, 2021. Retrieved from: https://studo.com/at,
last accessed: October 2021. Redirected from https://studo.co.

[216] Farrukh Suvankulov. Job search on the internet, e-recruitment, and labor
market outcomes. Technical report, RAND CORP SANTA MONICA
CA, 2010.

[217] Ugo Tanielian, Anne-Marie Tousch, and Flavian Vasile. Siamese cookie

148

embedding networks for cross-device user matching. In Companion Pro-
ceedings of the The Web Conference 2018, pages 85–86. ACM, 2018.

[218] Textkernel. Website Textkernel, 2017. Retrieved from: https://www.
textkernel.com/, last accessed: October 2021.

[219] textkernel. Website Textkernel, 2021. Retrieved from: https://www.
textkernel.com, last accessed: October 2021.

[220] theLadders. Eye-Tracking Study, 2018. Retrieved from:
https://www.theladders.com/static/images/basicSite/pdfs/
TheLadders-EyeTracking-StudyC2.pdf, last accessed: October 2021.

[221] Tijmen Tieleman and G Hinton. Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural Networks for Machine
Learning, 2012.

[222] Minh-Luan Tran, Anh-Tuyen Nguyen, Quoc-Dung Nguyen, and Tin
Huynh. A comparison study for job recommendation. In 2017 Interna-
tional Conference on Information and Communications (ICIC), pages
199–204. IEEE, 2017.

[223] Nam Khanh Tran. Classification and learning-to-rank approaches
for cross-device matching at CIKM cup 2016. arXiv preprint
arXiv:1612.07117, 2016.

[224] Jorge Carlos Valverde-Rebaza, Ricardo Puma, Paul Bustios, and
Nathalia C. Silva. Job recommendation based on job seeker skills: An
empirical study. In Text2Story@ ECIR, pages 47–51, 2018.

[225] David L. Van Rooy, Alexander Alonso, and Zachary Fairchild. In with
the new, out with the old: Has the technological revolution eliminated
the traditional job search process? International journal of selection and
assessment, 11(2-3):170–174, 2003.

[226] José Vega. Semantic matching between job offers and job search requests.
In COLING 1990 Volume 1: Papers presented to the 13th International
Conference on Computational Linguistics, 1990.

[227] Maksims Volkovs, Guang Wei Yu, and Tomi Poutanen. Content-based
neighbor models for cold start in recommender systems. In RecSys Chal-
lenge ’17: Proceedings of the Recommender Systems Challenge 2017,
pages 1–6. 2017.

149

[228] Chao Wang, Yiqun Liu, Meng Wang, Ke Zhou, Jian-yun Nie, and Shaop-
ing Ma. Incorporating non-sequential behavior into click models. In Pro-
ceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 283–292, 2015.

[229] Hongning Wang, ChengXiang Zhai, Anlei Dong, and Yi Chang. Content-
aware click modeling. In Proceedings of the 22nd international conference
on World Wide Web, pages 1365–1376, 2013.

[230] Jian Wang, Yi Zhang, Christian Posse, and Anmol Bhasin. Is it time for
a career switch? In Proceedings of the 22nd international conference on
World Wide Web, pages 1377–1388. ACM, 2013.

[231] Pengyang Wang, Yingtong Dou, and Yang Xin. The analysis and design
of the job recommendation model based on GBRT and time factors.
In 2016 IEEE International Conference on Knowledge Engineering and
Applications (ICKEA), pages 29–35. IEEE, 2016.

[232] Ping Wang, Yan Li, and Chandan K Reddy. Machine learning for sur-
vival analysis: A survey. arXiv preprint arXiv:1708.04649, 2017.

[233] Qingchen Wang. Recombining customer journeys with probabilistic
cookie matching: A supervised learning approach. In Machine learning
applications in operations management and digital marketing, chapter 6,
pages 127–139. 2019.

[234] Marcel Wolbers, Paul Blanche, Michael T Koller, Jacqueline CM Wit-
teman, and Thomas A Gerds. Concordance for prognostic models with
competing risks. Biostatistics, 15(3):526–539, 2014.

[235] Wenming Xiao, Xiao Xu, Kang Liang, Junkang Mao, and Jun Wang. Job
recommendation with hawkes process: an effective solution for recsys
challenge 2016. In Proceedings of the recommender systems challenge,
pages 1–4. 2016.

[236] Xing. Website Xing, 2021. Retrieved from: https://www.xing.com, last
accessed: October 2021.

[237] Peng Xu and Denilson Barbosa. Matching résumés to job descriptions
with stacked models. In Canadian Conference on Artificial Intelligence,
pages 304–309. Springer, 2018.

[238] Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol
Bhasin. From infrastructure to culture: A/B testing challenges in large

150

scale social networks. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages
2227–2236, 2015.

[239] Murat Yagci and Fikret Gurgen. A ranker ensemble for multi-objective
job recommendation in an item cold start setting. In Proceedings of the
Recommender Systems Challenge, pages 1–4. 2017.

[240] Rui Yan, Ran Le, Yang Song, Tao Zhang, Xiangliang Zhang, and
Dongyan Zhao. Interview choice reveals your preference on the market:
To improve job-resume matching through profiling memories. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 914–922, 2019.

[241] Shuo Yang, Mohammed Korayem, Khalifeh AlJadda, Trey Grainger, and
Sriraam Natarajan. Combining content-based and collaborative filtering
for job recommendation system: A cost-sensitive statistical relational
learning approach. Knowledge-Based Systems, 136:37–45, 2017.

[242] In-Kwon Yeo and Richard A. Johnson. A new family of power transfor-
mations to improve normality or symmetry. Biometrika, 87(4):954–959,
2000.

[243] Safoora Yousefi, Fatemeh Amrollahi, Mohamed Amgad, Chengliang
Dong, Joshua E Lewis, Congzheng Song, David A Gutman, Sameer H
Halani, Jose Enrique Velazquez Vega, Daniel J Brat, et al. Predict-
ing clinical outcomes from large scale cancer genomic profiles with deep
survival models. Scientific Reports, 7(1):11707, 2017.

[244] Kun Yu, Gang Guan, and Ming Zhou. Resume information extraction
with cascaded hybrid model. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages 499–506. Associa-
tion for Computational Linguistics, 2005.

[245] Abeer Zaroor, Mohammed Maree, and Muath Sabha. A hybrid approach
to conceptual classification and ranking of resumes and their correspond-
ing job posts. In International Conference on Intelligent Decision Tech-
nologies, pages 107–119. Springer, 2017.

[246] Abeer Zaroor, Mohammed Maree, and Muath Sabha. Jrc: a job post and
resume classification system for online recruitment. In 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence (ICTAI),
pages 780–787. IEEE, 2017.

151

[247] Chenrui Zhang and Xueqi Cheng. An ensemble method for job recom-
mender systems. In RecSys Challenge ’16: Proceedings of the Recom-
mender Systems Challenge, pages 1–4. 2016.

[248] XianXing Zhang, Yitong Zhou, Yiming Ma, Bee-Chung Chen, Liang
Zhang, and Deepak Agarwal. Glmix: Generalized linear mixed mod-
els for large-scale response prediction. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data min-
ing, pages 363–372, 2016.

[249] Yuchen Zhang, Dong Wang, Gang Wang, Weizhu Chen, Zhihua Zhang,
Botao Hu, and Li Zhang. Learning click models via probit bayesian
inference. In Proceedings of the 19th ACM international conference on
Information and knowledge management, pages 439–448. ACM, 2010.

[250] Yuchen Zhang, Weizhu Chen, Dong Wang, and Qiang Yang. User-click
modeling for understanding and predicting search-behavior. In Proceed-
ings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1388–1396. ACM, 2011.

[251] Alice Zheng and Amanda Casari. Feature engineering for machine learn-
ing: principles and techniques for data scientists. O’Reilly Media, Inc.,
2018.

[252] Chen Zhu, Hengshu Zhu, Hui Xiong, Chao Ma, Fang Xie, Pengliang
Ding, and Pan Li. Person-job fit: Adapting the right talent for the right
job with joint representation learning. ACM Transactions on Manage-
ment Information Systems (TMIS), 9(3):1–17, 2018.

[253] Zeyuan Allen Zhu, Weizhu Chen, Tom Minka, Chenguang Zhu, and
Zheng Chen. A novel click model and its applications to online advertis-
ing. In Proceedings of the third ACM international conference on Web
search and data mining, pages 321–330, 2010.

[254] Dávid Zibriczky. A combination of simple models by forward predictor
selection for job recommendation. In RecSys Challenge ’16: Proceedings
of the Recommender Systems Challenge, pages 1–4. 2016.

[255] Rebecca R. Zusman and Ronald S. Landis. Applicant preferences for
web-based versus traditional job postings. Computers in Human Behav-
ior, 18(3):285–296, 2002.

152

Samenvatting

Zoekmachines en aanbevelingssystemen hebben een bepalende invloed op het
online wervingsproces van personeel. Voor werkzoekenden bepalen ze welke
vacatures worden aanbevolen op vacaturewebsites en in welke volgorde, maar
ook zijn ze belangrijk voor recruiters. Deze systemen bepalen namelijk welke
kandidaten worden getoond bij het zoeken in een CV-database en in welke
volgorde.

Een zoekmachine/aanbevelingssysteem maakt daarbij gebruik van schattingen
van de relevantie van een vacature/kandidaat voor een werkzoekende/recruiter.
Deze geschatte relevantie bepaalt uiteindelijk welke vacatures/kandidaten in
het zoekresultaat voorkomen en in welke volgorde. Om deze relevantie te
schatten, moet een zoekmachine/aanbevelingssysteem het doen met beperkte
informatie. Vaak zijn alleen de huidige en voorgaande zoekopdrachten bek-
end, zowel van de persoon die de zoekopdracht uitvoert, als de vorige zoekop-
drachten van anderen. De zoekmachine/aanbevelingssysteem kan daarnaast
gebruik maken van interactie op zoekresultaten. Oftewel, op welke vaca-
tures/kandidaten er is doorgeklikt en op welke niet. De vraag is nu hoe op
basis van deze informatie de relevantie zo goed mogelijk te schatten. Deze
dissertatie beschouwt daarvoor verschillende algoritmen, die als doel hebben
een betere schatting te maken van de relevantie van een vacature/kandidaat
voor een werkzoekende/recruiter.

Hoofdstuk 2 geeft daarbij een overzicht van de huidige literatuur op het gebied
van vacature-aanbevelingssystemen. In overeenstemming met andere vakge-
bieden, laat dit hoofdstuk daarin een stijging zien in het aantal contributies dat
gebruik maakt van Deep Neural Networks. Deze modellen zijn in het bijzon-
der sterk in het automatisch genereren van numerieke (vector)representaties
van vacatures en een CV’s. Deze representaties kunnen vervolgens worden
gebruikt om een schatting te maken van relevantie, bijvoorbeeld door een af-

153

stand te bepalen tussen de representatie van een vacature en CV. Dat deze
modellen goed in staat zijn om numerieke representaties te maken is bijzonder.
Niet alleen kan een vacaturetekst/CV ambigue zijn, ook kunnen recruiters en
werkzoekenden gebruik maken van verschillende terminologieën. Vacatures en
CV’s zijn daardoor vaak lastig tekstueel te matchen.

Mogelijk worden echter toepassingsspecifieke problemen in vacature-aanbeve-
lingssystemen genegeerd. Een vacature kan misschien volgens de numerieke
representatie goed matchen met een CV, maar wanneer er al veel sollicitaties
op deze vacature zijn, is het dan in het belang van de werkzoekende/recruiter
om de vacature aan te bevelen? Contributies die een meer toepassingsspecifiek
perspectief hebben laten de voordelen daarvan zien. Zo kan het verlagen van
de positie van een zoekresultaat voor vacatures met veel sollicitaties leiden
tot een betere spreiding van kandidaten over vergelijkbare vacatures. Daar-
naast kan aandacht aan de eerlijkheid van het zoek-/aanbevelingsalgoritme
voorkomen dat personen met dezelfde kennis en ervaring toch onterecht ver-
schillende aanbevelingen krijgen.

Hoofdstuk 3 gaat in op het schatten van relevantie op basis van klikgedrag.
Sinds de komst van zoekmachines zijn er verschillende modellen geïntroduceerd
die klikgedrag op zoekmachines proberen te verklaren. Deze modellen worden
ook wel klikmodellen genoemd. De relevantie van een item (zoals een kandi-
daat/vacature) voor een gebruiker (werkzoekende/recruiter) speelt daarin een
belangrijke rol. Relevantie is echter niet het enige wat klikgedrag bepaalt.
Ook de positionering van zoekresultaten speelt een rol. Items die hoger in het
zoekresultaat staan hebben een grotere kans om op te worden geklikt, ongeacht
of deze ook het meest relevant zijn. Dit wordt ook wel het positie-effect ge-
noemd.

Klikmodellen hebben vaak een eigen methode om de parameters uit het model
te schatten. Het is echter mogelijk om veel van deze modellen om te schri-
jven naar een generieker model, het zogenaamde Generalized Cascade Model
(GCM). De parameters van een GCM kunnen geschat worden met behulp van
de Expectation-Maximization-schattingsmethode voor Input/Output Hidden
Markov Models. Dit betekent dat het niet nodig is om voor elk klikmodel
apart een schattingsmethode uit te werken. Als het model omgeschreven kan
worden naar een GCM, dan biedt GCM direct een methode om de parameters
van het klikmodel te schatten.

Hoofdstuk 3 laat zien hoe van Expectation-Maximization voor Input/Output
Hidden Markov Models gebruik gemaakt kan worden om de parameters van
een GCM, en daarmee het oorspronkelijke klikmodel, te schatten. Daarnaast

154

geeft het een aantal voorbeelden hoe bestaande klikmodellen kunnen worden
geschreven als GCM. De schattingsmethode is ook geïmplementeerd in een
Python package onder de naam gecasmo.

Hoofdstuk 4 schat het effect van gebruikerscensurering op het achterhalen van
welke gebruiker welk klikgedrag heeft vertoond. Websites, en daarmee zoek-
machines, gebruiken vaak browsercookies om te achterhalen welke klikdata bij
welke gebruiker hoort. Wanneer de gebruiker echter via meerdere apparaten
de zoekmachine benadert, of de browsercookies weggooit, kunnen die browser-
cookies niet eenvoudig meer bepalen welk klikgedrag van wie afkomstig is.

Om het effect van gebruikerscensurering te bepalen, wordt er in Hoofdstuk 4
een kliksimulatiemodel geïntroduceerd. Ook vergelijkt dit hoofdstuk verschil-
lende clusteringsmethoden op basis van (H)DBSCAN*. Deze clusteringsmeth-
oden proberen te achterhalen welk gedrag van welke gebruiker afkomstig is.
Ze maken daarbij niet/beperkt gebruik van informatie uit browsercookies.

Uit de analyse blijkt dat gebruikerscensurering door het gebruik van meerdere
apparaten en het verwijderen van browsercookies gering is. Ondanks de cen-
surering zijn browsercookies vrij nauwkeurig in staat om gebruikers te iden-
tificeren. Daarmee kan er door browsercookies ook vrij nauwkeurige schat-
tingen worden gegeven van webstatistieken die betrekking hebben op deze
gebruikers. Voorbeelden van deze webstatistieken zijn het aantal internet-
sessies per gebruiker, of het aantal unieke gebruikers op de website. Voor
de (H)DBSCAN*-clusteringsmethoden is dit een ander verhaal. Ondanks dat
deze methoden significant beter presteren dan een naïve clusteringsmethode,
blijven de resultaten van deze methoden ver achter bij de resultaten die gevon-
den zijn bij het gebruik van browsercookies.

Hoofdstuk 5 gaat in op hoe lang iemand in zijn/haar functie zal blijven, ook wel
bekend als baanduur. Dit wordt gedaan door uit de werkervaringssecties van
CV’s de duur van de daarin genoemde banen te extraheren. Vervolgens worden
een aantal modellen vergeleken die deze baanduren proberen te voorspellen.
Daarbij wordt gebruik gemaakt van overige informatie uit het CV, zoals het
type functie waarvoor een voorspelling wordt gemaakt, of de werkervaring van
de persoon tot het moment dat deze persoon aan de functie in het CV begon.

De resultaten laten zien dat voornamelijk tijdselementen uit het CV een voor-
spellende waarde hebben voor de baanduur. Ondanks dat dit logisch lijkt,
worden deze tijdselementen momenteel nauwelijks meegenomen in kandidaat-
aanbevelingssystemen. Wel blijkt dat het voorspellen van baanduur lastig is.
De baanduur wordt in de werkervaringssectie vaak afgerond naar hele jaren,

155

waardoor kortetermijnvoorspellingen lastig zijn. De resultaten geven dan ook
de voorkeur aan robuuste modellen.

Hoofdstuk 6 richt zich op het voorspellen van het wekelijkse aantal sollicitaties
op een recruitmentwebsite. Deze voorspellingen geven daarmee aan welke va-
catures meer/minder stimulans nodig hebben. Uit een vergelijking van een
aantal Machine Learning-algoritmen geeft vooral Random Forest goede resul-
taten.

156

Summary

Search engines and recommender systems have an important influence on the
recruitment process, both for recruiters and job seekers. For both, they deter-
mine which job seekers/vacancies are recommended in what order, on résumé
databases or recruitment websites. In doing so, they influence which vacancies
job seeker apply to, or which job applicants are selected for an interview. To
determine which vacancies/candidates to show and in what order, the search
engine/recommender system uses estimations of the relevance of a vacancy/-
candidate for a job seeker/recruiter.

To estimate this relevancy, the search engine/recommender system often only
have partial information. In particular, only the search queries are known, and
the click interaction on the search result. This interaction data shows which
vacancies/candidates have been clicked on by users of the search engine/rec-
ommender system. This dissertation considers multiple algorithms, with the
goal of improving estimations of relevance in the context of job/candidate
recommender systems and search engines.

Chapter 2 provides an overview of the current literature in the field of job rec-
ommender systems. In agreement with other application areas, this literature
shows an increase in the number of contributions that use Deep Neural Net-
works. These models are used to create vector embeddings of vacancies and
résumés. These embeddings can subsequently be used to estimate relevance,
for example, by computing distances between the vector representations of va-
cancies and résumés. The deep representations seem to resolve some problems
of text ambiguity, and the problem of job seekers and recruiters using different
terminologies to describe jobs.

Perhaps because of the focus on creating good vector embeddings, other appli-
cation-related problems in job recommender systems are sometimes neglected.

157

A vacancy and a résumé may semantically match well, however, if the vacancy
already has many applications, is it then beneficial to recommend the vacancy
to the job seeker (or vice versa)? Contributions that have a more application-
oriented view show the benefits of such a view. This literature suggests that
lowering the rank of the vacancy in the search result may lead to a better
spread of candidates over multiple similar vacancies. Contributions that put
attention to algorithm fairness also show that this may prevent two job seekers
with identical backgrounds to unjustly receive different recommendations.

Chapter 3 focuses on estimating relevance based on click data. Several models
have been proposed in the literature that try to explain the behavior often
observed on search engines and recommender systems. These models are also
known as click models. Although the relevance of an item (such as a candi-
date/vacancy) for a user (recruiter/job seeker) plays an important role in these
models, it is not the only variable that determines search behavior. Also the
position of the items has an effect, which is often referred to as the position
bias.

Click models often have their own method for estimating the parameters of the
model. It is, however, possible to write many of these models as a more generic
click model, which we call the Generalized Cascade Model (GCM). The pa-
rameters of a GCM can be estimated by using Expectation-Maximization for
Input/Output Hidden Markov Models. This means that it is not necessary for
each click model to have a separate estimation procedure. If the model can be
written as GCM, the Expectation-Maximization procedure for Input/Output
Hidden Markov Models directly provides a method for estimation the parame-
ters of the GCM, and therefore, for the original click model. Chapter 3 shows
how Expectation-Maximization for Input/Output Hidden Markov Models can
be used to estimate the parameters of a GCM. Also, it provides a number of ex-
amples of how existing click models can be rewritten as GCM. The estimation
procedure has also been implemented in a Python package called gecasmo.

Chapter 4 estimates the effect that user censoring has in detecting which user
caused what website traffic. Websites use browser cookies to determine what
click data originated from which user. However, when website users use mul-
tiple devices, or remove their browser cookies from their browser, the browser
cookies cannot easily be used anymore to determine the user.

To determine the effect of user censoring, Chapter 4 introduces a click sim-
ulation model. Also, this chapter compares several clustering methods based
on the (H)DBSCAN* algorithm. These clustering algorithms try to determine
what click data originated from which user, without — or by making limited

158

use of — cookie data. The results suggest that the effect of user censoring
due to the usage of multiple devices/removing cookies is small. Despite the
user censuring, browser cookies are still quite able to determine which user
generated which sessions. As a result, the observed web statistics under user
censoring with respect to users, such as the number of sessions per user or the
number of unique users, are also quite accurate. Although the (H)DBSCAN*
methods perform significantly better than a naive clustering approach, the re-
sults are considerably worse compared to the results obtained by using browser
cookies.

Chapter 5 compares several machine learning methods that predict how long
someone will remain in his/her job, which we refer to as job tenure. This is
done by extracting these job tenures from the work experience section often
found in résumés. To estimate job tenure, the models use other information
found in the résumé, such as the function type, or the work experience up until
the moment the person started the job.

The results indicate that in particular time-related features are good predic-
tors in estimating future tenure. Although this may seem trivial, time-related
features are typically not taken into account in candidate recommender sys-
tems. Predicting job tenure from résumés is, however, a difficult problem. Job
tenure is often rounded to entire years, making it difficult to make short-term
predictions based on this data. The results therefore also prefer robust models.

Chapter 6 compares several machine learning models in predicting the weekly
number of applications that a vacancy on a recruitment website will receive.
The predictions can be used to determine which vacancies may require more/-
less attention on the recruitment website. From this model comparison, we
find that in particular Random Forest works well for this purpose.

159

