26,486 research outputs found

    Recommendation, collaboration and social search

    Get PDF
    This chapter considers the social component of interactive information retrieval: what is the role of other people in searching and browsing? For simplicity we begin by considering situations without computers. After all, you can interactively retrieve information without a computer; you just have to interact with someone or something else. Such an analysis can then help us think about the new forms of collaborative interactions that extend our conceptions of information search, made possible by the growth of networked ubiquitous computing technology. Information searching and browsing have often been conceptualized as a solitary activity, however they always have a social component. We may talk about 'the' searcher or 'the' user of a database or information resource. Our focus may be on individual uses and our research may look at individual users. Our experiments may be designed to observe the behaviors of individual subjects. Our models and theories derived from our empirical analyses may focus substantially or exclusively on an individual's evolving goals, thoughts, beliefs, emotions and actions. Nevertheless there are always social aspects of information seeking and use present, both implicitly and explicitly. We start by summarizing some of the history of information access with an emphasis on social and collaborative interactions. Then we look at the nature of recommendations, social search and interfaces to support collaboration between information seekers. Following this we consider how the design of interactive information systems is influenced by their social elements

    Exploring Deep Space: Learning Personalized Ranking in a Semantic Space

    Full text link
    Recommender systems leverage both content and user interactions to generate recommendations that fit users' preferences. The recent surge of interest in deep learning presents new opportunities for exploiting these two sources of information. To recommend items we propose to first learn a user-independent high-dimensional semantic space in which items are positioned according to their substitutability, and then learn a user-specific transformation function to transform this space into a ranking according to the user's past preferences. An advantage of the proposed architecture is that it can be used to effectively recommend items using either content that describes the items or user-item ratings. We show that this approach significantly outperforms state-of-the-art recommender systems on the MovieLens 1M dataset.Comment: 6 pages, RecSys 2016 RSDL worksho

    Studying and Modeling the Connection between People's Preferences and Content Sharing

    Full text link
    People regularly share items using online social media. However, people's decisions around sharing---who shares what to whom and why---are not well understood. We present a user study involving 87 pairs of Facebook users to understand how people make their sharing decisions. We find that even when sharing to a specific individual, people's own preference for an item (individuation) dominates over the recipient's preferences (altruism). People's open-ended responses about how they share, however, indicate that they do try to personalize shares based on the recipient. To explain these contrasting results, we propose a novel process model of sharing that takes into account people's preferences and the salience of an item. We also present encouraging results for a sharing prediction model that incorporates both the senders' and the recipients' preferences. These results suggest improvements to both algorithms that support sharing in social media and to information diffusion models.Comment: CSCW 201

    Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback

    Full text link
    Albeit, the implicit feedback based recommendation problem - when only the user history is available but there are no ratings - is the most typical setting in real-world applications, it is much less researched than the explicit feedback case. State-of-the-art algorithms that are efficient on the explicit case cannot be straightforwardly transformed to the implicit case if scalability should be maintained. There are few if any implicit feedback benchmark datasets, therefore new ideas are usually experimented on explicit benchmarks. In this paper, we propose a generic context-aware implicit feedback recommender algorithm, coined iTALS. iTALS apply a fast, ALS-based tensor factorization learning method that scales linearly with the number of non-zero elements in the tensor. The method also allows us to incorporate diverse context information into the model while maintaining its computational efficiency. In particular, we present two such context-aware implementation variants of iTALS. The first incorporates seasonality and enables to distinguish user behavior in different time intervals. The other views the user history as sequential information and has the ability to recognize usage pattern typical to certain group of items, e.g. to automatically tell apart product types or categories that are typically purchased repetitively (collectibles, grocery goods) or once (household appliances). Experiments performed on three implicit datasets (two proprietary ones and an implicit variant of the Netflix dataset) show that by integrating context-aware information with our factorization framework into the state-of-the-art implicit recommender algorithm the recommendation quality improves significantly.Comment: Accepted for ECML/PKDD 2012, presented on 25th September 2012, Bristol, U
    corecore