4,066 research outputs found

    Multilingual search for cultural heritage archives via combining multiple translation resources

    Get PDF
    The linguistic features of material in Cultural Heritage (CH) archives may be in various languages requiring a facility for effective multilingual search. The specialised language often associated with CH content introduces problems for automatic translation to support search applications. The MultiMatch project is focused on enabling users to interact with CH content across different media types and languages. We present results from a MultiMatch study exploring various translation techniques for the CH domain. Our experiments examine translation techniques for the English language CLEF 2006 Cross-Language Speech Retrieval (CL-SR) task using Spanish, French and German queries. Results compare effectiveness of our query translation against a monolingual baseline and show improvement when combining a domain-specific translation lexicon with a standard machine translation system

    An Extreme Learning Machine-Relevance Feedback Framework for Enhancing the Accuracy of a Hybrid Image Retrieval System

    Get PDF
    The process of searching, indexing and retrieving images from a massive database is a challenging task and the solution to these problems is an efficient image retrieval system. In this paper, a unique hybrid Content-based image retrieval system is proposed where different attributes of an image like texture, color and shape are extracted by using Gray level co-occurrence matrix (GLCM), color moment and various region props procedure respectively. A hybrid feature matrix or vector (HFV) is formed by an integration of feature vectors belonging to three individual visual attributes. This HFV is given as an input to an Extreme learning machine (ELM) classifier which is based on a solitary hidden layer of neurons and also is a type of feed-forward neural system. ELM performs efficient class prediction of the query image based on the pre-trained data. Lastly, to capture the high level human semantic information, Relevance feedback (RF) is utilized to retrain or reformulate the training of ELM. The advantage of the proposed system is that a combination of an ELM-RF framework leads to an evolution of a modified learning and intelligent classification system. To measure the efficiency of the proposed system, various parameters like Precision, Recall and Accuracy are evaluated. Average precision of 93.05%, 81.03%, 75.8% and 90.14% is obtained respectively on Corel-1K, Corel-5K, Corel-10K and GHIM-10 benchmark datasets. The experimental analysis portrays that the implemented technique outmatches many state-of-the-art related approaches depicting varied hybrid CBIR system

    Attribute-Graph: A Graph based approach to Image Ranking

    Full text link
    We propose a novel image representation, termed Attribute-Graph, to rank images by their semantic similarity to a given query image. An Attribute-Graph is an undirected fully connected graph, incorporating both local and global image characteristics. The graph nodes characterise objects as well as the overall scene context using mid-level semantic attributes, while the edges capture the object topology. We demonstrate the effectiveness of Attribute-Graphs by applying them to the problem of image ranking. We benchmark the performance of our algorithm on the 'rPascal' and 'rImageNet' datasets, which we have created in order to evaluate the ranking performance on complex queries containing multiple objects. Our experimental evaluation shows that modelling images as Attribute-Graphs results in improved ranking performance over existing techniques.Comment: In IEEE International Conference on Computer Vision (ICCV) 201

    Deep Learning Perspectives on Efficient Image Matching in Natural Image Databases

    Get PDF
    With the proliferation of digital content, efficient image matching in natural image databases has become paramount. Traditional image matching techniques, while effective to a certain extent, face challenges in dealing with the high variability inherent in natural images. This research delves into the application of deep learning models, particularly Convolutional Neural Networks (CNNs), Siamese Networks, and Triplet Networks, to address these challenges. We introduce various techniques to enhance efficiency, such as data augmentation, transfer learning, dimensionality reduction, efficient sampling, and the amalgamation of traditional computer vision strategies with deep learning. Our experimental results, garnered from specific dataset, demonstrate significant improvements in image matching efficiency, as quantified by metrics like precision, recall, F1-Score, and matching time. The findings underscore the potential of deep learning as a transformative tool for natural image database matching, setting the stage for further research and optimization in this domain

    The Inhuman Overhang: On Differential Heterogenesis and Multi-Scalar Modeling

    Get PDF
    As a philosophical paradigm, differential heterogenesis offers us a novel descriptive vantage with which to inscribe Deleuze’s virtuality within the terrain of “differential becoming,” conjugating “pure saliences” so as to parse economies, microhistories, insurgencies, and epistemological evolutionary processes that can be conceived of independently from their representational form. Unlike Gestalt theory’s oppositional constructions, the advantage of this aperture is that it posits a dynamic context to both media and its analysis, rendering them functionally tractable and set in relation to other objects, rather than as sedentary identities. Surveying the genealogy of differential heterogenesis with particular interest in the legacy of Lautman’s dialectic, I make the case for a reading of the Deleuzean virtual that departs from an event-oriented approach, galvanizing Sarti and Citti’s dynamic a priori vis-à-vis Deleuze’s philosophy of difference. Specifically, I posit differential heterogenesis as frame with which to examine our contemporaneous epistemic shift as it relates to multi-scalar computational modeling while paying particular attention to neuro-inferential modes of inductive learning and homologous cognitive architecture. Carving a bricolage between Mark Wilson’s work on the “greediness of scales” and Deleuze’s “scales of reality”, this project threads between static ecologies and active externalism vis-à-vis endocentric frames of reference and syntactical scaffolding

    Review of Semantic Importance and Role of using Ontologies in Web Information Retrieval Techniques

    Get PDF
    The Web contains an enormous amount of information, which is managed to accumulate, researched, and regularly used by many users. The nature of the Web is multilingual and growing very fast with its diverse nature of data including unstructured or semi-structured data such as Websites, texts, journals, and files. Obtaining critical relevant data from such vast data with its diverse nature has been a monotonous and challenging task. Simple key phrase data gathering systems rely heavily on statistics, resulting in a word incompatibility problem related to a specific word's inescapable semantic and situation variants. As a result, there is an urgent need to arrange such colossal data systematically to find out the relevant information that can be quickly analyzed and fulfill the users' needs in the relevant context. Over the years ontologies are widely used in the semantic Web to contain unorganized information systematic and structured manner. Still, they have also significantly enhanced the efficiency of various information recovery approaches. Ontological information gathering systems recover files focused on the semantic relation of the search request and the searchable information. This paper examines contemporary ontology-based information extraction techniques for texts, interactive media, and multilingual data types. Moreover, the study tried to compare and classify the most significant developments utilized in the search and retrieval techniques and their major disadvantages and benefits

    An automatic visual analysis system for tennis

    Get PDF
    This article presents a novel video analysis system for coaching tennis players of all levels, which uses computer vision algorithms to automatically edit and index tennis videos into meaningful annotations. Existing tennis coaching software lacks the ability to automatically index a tennis match into key events, and therefore, a coach who uses existing software is burdened with time-consuming manual video editing. This work aims to explore the effectiveness of a system to automatically detect tennis events. A secondary aim of this work is to explore the bene- fits coaches experience in using an event retrieval system to retrieve the automatically indexed events. It was found that automatic event detection can significantly improve the experience of using video feedback as part of an instructional coaching session. In addition to the automatic detection of key tennis events, player and ball movements are automati- cally tracked throughout an entire match and this wealth of data allows users to find interesting patterns in play. Player and ball movement information are integrated with the automatically detected tennis events, and coaches can query the data to retrieve relevant key points during a match or analyse player patterns that need attention. This coaching software system allows coaches to build advanced queries, which cannot be facilitated with existing video coaching solutions, without tedious manual indexing. This article proves that the event detection algorithms in this work can detect the main events in tennis with an average precision and recall of 0.84 and 0.86, respectively, and can typically eliminate man- ual indexing of key tennis events
    corecore