10,834 research outputs found

    Mobile Commerce and Applications: An Exploratory Study and Review

    Get PDF
    Mobile commerce is enabling the development of additional revenue streams for organizations through the delivery of chargeable mobile services. According to the European Information Technology Observatory, the total amount of revenue generated by mobile commerce was reported to be less than {\pounds}9 million in the United Kingdom in 2001. By 2005 this had, at least, doubled and more recent industry forecasts project significant global growth in this area. Mobile commerce creates a range of business opportunities and new revenue streams for businesses across industry sectors via the deployment of innovative services, applications and associated information content. This paper presents a review of mobile commerce business models and their importance for the creation of mobile commerce solutions.Comment: Journal of Computing online at https://sites.google.com/site/journalofcomputing

    In Vivo Evaluation of the Secure Opportunistic Schemes Middleware using a Delay Tolerant Social Network

    Full text link
    Over the past decade, online social networks (OSNs) such as Twitter and Facebook have thrived and experienced rapid growth to over 1 billion users. A major evolution would be to leverage the characteristics of OSNs to evaluate the effectiveness of the many routing schemes developed by the research community in real-world scenarios. In this paper, we showcase the Secure Opportunistic Schemes (SOS) middleware which allows different routing schemes to be easily implemented relieving the burden of security and connection establishment. The feasibility of creating a delay tolerant social network is demonstrated by using SOS to power AlleyOop Social, a secure delay tolerant networking research platform that serves as a real-life mobile social networking application for iOS devices. SOS and AlleyOop Social allow users to interact, publish messages, and discover others that share common interests in an intermittent network using Bluetooth, peer-to-peer WiFi, and infrastructure WiFi.Comment: 6 pages, 4 figures, accepted in ICDCS 2017. arXiv admin note: text overlap with arXiv:1702.0565

    A Resource Intensive Traffic-Aware Scheme for Cluster-based Energy Conservation in Wireless Devices

    Full text link
    Wireless traffic that is destined for a certain device in a network, can be exploited in order to minimize the availability and delay trade-offs, and mitigate the Energy consumption. The Energy Conservation (EC) mechanism can be node-centric by considering the traversed nodal traffic in order to prolong the network lifetime. This work describes a quantitative traffic-based approach where a clustered Sleep-Proxy mechanism takes place in order to enable each node to sleep according to the time duration of the active traffic that each node expects and experiences. Sleep-proxies within the clusters are created according to pairwise active-time comparison, where each node expects during the active periods, a requested traffic. For resource availability and recovery purposes, the caching mechanism takes place in case where the node for which the traffic is destined is not available. The proposed scheme uses Role-based nodes which are assigned to manipulate the traffic in a cluster, through the time-oriented backward difference traffic evaluation scheme. Simulation study is carried out for the proposed backward estimation scheme and the effectiveness of the end-to-end EC mechanism taking into account a number of metrics and measures for the effects while incrementing the sleep time duration under the proposed framework. Comparative simulation results show that the proposed scheme could be applied to infrastructure-less systems, providing energy-efficient resource exchange with significant minimization in the power consumption of each device.Comment: 6 pages, 8 figures, To appear in the proceedings of IEEE 14th International Conference on High Performance Computing and Communications (HPCC-2012) of the Third International Workshop on Wireless Networks and Multimedia (WNM-2012), 25-27 June 2012, Liverpool, U

    The 3DMA Middleware for Mobile Applications

    Get PDF
    Mobile devices have received much research interest in re- cent years. Mobility raises new issues such as more dynamic context, limited computing resources, and frequent disconnections. To handle these issues, we propose a middleware, called 3DMA, which introduces three requirements, 1) distribution, 2) decoupling and 3) decomposition. 3DMA uses a space based middleware approach combined with a set of workers which are able to act on the users behalf either to reduce load on the mobile device, or to support disconnected behavior. In order to demonstrate aspects of the middleware architecture we consider the development of a commonly used mobile application

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Towards Semantic Integration of Heterogeneous Sensor Data with Indigenous Knowledge for Drought Forecasting

    Full text link
    In the Internet of Things (IoT) domain, various heterogeneous ubiquitous devices would be able to connect and communicate with each other seamlessly, irrespective of the domain. Semantic representation of data through detailed standardized annotation has shown to improve the integration of the interconnected heterogeneous devices. However, the semantic representation of these heterogeneous data sources for environmental monitoring systems is not yet well supported. To achieve the maximum benefits of IoT for drought forecasting, a dedicated semantic middleware solution is required. This research proposes a middleware that semantically represents and integrates heterogeneous data sources with indigenous knowledge based on a unified ontology for an accurate IoT-based drought early warning system (DEWS).Comment: 5 pages, 3 figures, In Proceedings of the Doctoral Symposium of the 16th International Middleware Conference (Middleware Doct Symposium 2015), Ivan Beschastnikh and Wouter Joosen (Eds.). ACM, New York, NY, US

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft
    corecore