4 research outputs found

    Containment of Shape Expression Schemas for RDF

    Get PDF
    We study the problem of containment for shape expression schemas (ShEx) for RDF graphs. We identify a subclass of ShEx that has a natural graphical representation in the form of shape graphs and their semantics is captured with a tractable notion of embedding of an RDF graph in a shape graph. When applied to pairs of shape graphs, an embedding is a sufficient condition for containment, and for a practical subclass of deterministic shape graphs, it is also a necessary one, thus yielding a subclass with tractable containment. While for general shape graphs a minimal counter-example i.e., an instance proving non-containment, might be of exponential size, we show that containment is EXP-hard and in coNEXP. Finally, we show that containment for arbitrary ShEx is coNEXP-hard and in coTwoNEXP^NP

    Containment of Shape Expression Schemas for RDF

    Get PDF
    International audienceWe study the problem of containment of shape expression schemas (ShEx) for RDF graphs. We identify a subclass of ShEx that has a natural graphical representation in the form of shape graphs and whose semantics is captured with a tractable notion of embedding of an RDF graph in a shape graph. When applied to pairs of shape graphs, an embedding is a sufficient condition for containment, and for a practical subclass of deterministic shape graphs, it is also a necessary one, thus yielding a subclass with tractable containment. Containment for general shape graphs is EXP-complete. Finally , we show that containment for arbitrary ShEx is decid-able. CCS CONCEPTS • Information systems → Graph-based database models ; Resource Description Framework (RDF); • Theory of computation → Database theory; Database interoper-ability

    Inference of Shape Graphs for Graph Databases

    Get PDF
    We investigate the problem of constructing a shape graph that describes the structure of a given graph database. We employ the framework of grammatical inference, where the objective is to find an inference algorithm that is both sound, i.e., always producing a schema that validates the input graph, and complete, i.e., able to produce any schema, within a given class of schemas, provided that a sufficiently informative input graph is presented. We identify a number of fundamental limitations that preclude feasible inference. We present inference algorithms based on natural approaches that allow to infer schemas that we argue to be of practical importance

    Consistency and Certain Answers in Relational to RDF Data Exchange with Shape Constraints

    Full text link
    We investigate the data exchange from relational databases to RDF graphs inspired by R2RML with the addition of target shape schemas. We study the problems of consistency i.e., checking that every source instance admits a solution, and certain query answering i.e., finding answers present in every solution. We identify the class of constructive relational to RDF data exchange that uses IRI constructors and full tgds (with no existential variables) in its source to target dependencies. We show that the consistency problem is coNP-complete. We introduce the notion of universal simulation solution that allows to compute certain query answers to any class of queries that is robust under simulation. One such class are nested regular expressions (NREs) that are forward i.e., do not use the inverse operation. Using universal simulation solution renders tractable the computation of certain answers to forward NREs (data-complexity). Finally, we present a number of results that show that relaxing the restrictions of the proposed framework leads to an increase in complexity
    corecore