8 research outputs found

    Focality and Asymmetry in Multi-battle Contests

    Get PDF
    This article examines behavior in two-person constant-sum Colonel Blotto games in which each player maximizes the expected total value of the battlefields won. A lottery contest success function is employed in each battlefield. Recent experimental research on such games provides only partial support for Nash equilibrium behavior. We hypothesize that the salience of battlefields affects strategic behavior (the salient target hypothesis). We present a controlled test of this hypothesis – against Nash predictions – when the sources of salience come from certain asymmetries in either battlefield values or labels (as in Schelling (1960)). In both cases, subjects over-allocate the resource to the salient battlefields relative to the Nash prediction. However, the effect is stronger with salient values. In the absence of salience, we replicate previous results in the literature supporting the Nash prediction

    Focality and Asymmetry in Multi-battle Contests

    Get PDF
    This article examines the influence of focality in Colonel Blotto games with a lottery contest success function (CSF), where the equilibrium is unique and in pure strategies. We hypothesise that the salience of battlefields affects strategic behaviour (the salient target hypothesis) and present a controlled test of this hypothesis against Nash predictions, checking the robustness of equilibrium play. When the sources of salience come from asymmetries in battlefield values or labels (as in Schelling, 1960), subjects over-allocate the resource to the salient battlefields relative to the Nash prediction. However, the effect is stronger with salient values. In the absence of salience, we find support for the Nash prediction

    Protecting shared information in networks: a network security game with strategic attacks

    Get PDF
    International audienceA digital security breach, by which confidential information is leaked, does not only affect the agent whose system is infiltrated but is also detrimental to other agents socially connected to the infiltrated system. Although it has been argued that these externalities create incentives to underinvest in security, this presumption is challenged by the possibility of strategic adversaries that attack the least protected agents. In this paper we study a new model of security games in which agents share tokens of sensitive information in a network of contacts. The agents have the opportunity to invest in security to protect against an attack that can be either strategically or randomly targeted. We show that, in the presence of random attack, underinvestments always prevail at the Nash equilibrium in comparison with the social optimum. Instead, when the attack is strategic, either underinvestments or overinvestments are possible, depending on the network topology and on the characteristics of the process of the spreading of information. Actually, agents invest more in security than socially optimal when dependencies among agents are low (which can happen because the information network is sparsely connected or because the probability that information tokens are shared is small). These overinvestments pass on to underinvestments when information sharing is more likely (and therefore, when the risk brought by the attack is higher). In order to keep our analysis tractable, some of our results on strategic attacks make an assumption of homogeneity in the network, namely, that the network is vertex‐transitive. We complement these results with an analysis on star graphs (which are nonhomogeneous), which confirms that the essential lines of our findings can remain valid on general networks

    Contagion and observability in security domains

    No full text
    corecore