5 research outputs found

    Learning Image-Conditioned Dynamics Models for Control of Under-actuated Legged Millirobots

    Full text link
    Millirobots are a promising robotic platform for many applications due to their small size and low manufacturing costs. Legged millirobots, in particular, can provide increased mobility in complex environments and improved scaling of obstacles. However, controlling these small, highly dynamic, and underactuated legged systems is difficult. Hand-engineered controllers can sometimes control these legged millirobots, but they have difficulties with dynamic maneuvers and complex terrains. We present an approach for controlling a real-world legged millirobot that is based on learned neural network models. Using less than 17 minutes of data, our method can learn a predictive model of the robot's dynamics that can enable effective gaits to be synthesized on the fly for following user-specified waypoints on a given terrain. Furthermore, by leveraging expressive, high-capacity neural network models, our approach allows for these predictions to be directly conditioned on camera images, endowing the robot with the ability to predict how different terrains might affect its dynamics. This enables sample-efficient and effective learning for locomotion of a dynamic legged millirobot on various terrains, including gravel, turf, carpet, and styrofoam. Experiment videos can be found at https://sites.google.com/view/imageconddy

    Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

    Full text link
    Properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. However, it is still unclear what constitutes favorable natural dynamics and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit-cycles and the notion of self-stability. We instead emphasize the importance of stepping beyond basins of attraction. We show an approach based on viability theory to quantify robust sets in state-action space. These sets are valid for the family of all robust control policies, which allows us to quantify the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate our formulation using spring-mass models, simple low dimensional models of running systems. We then show an example application by optimizing robustness of a simulated planar monoped, using a gradient-free optimization scheme. Both case studies result in a nonlinear effective stiffness providing more robustness.Comment: 15 pages. This work has been accepted to IEEE Transactions on Robotics (2019

    Contact Invariant Model Learning for Legged Robot Locomotion

    No full text
    In this work we present a new formulation for learning the dynamics of legged robots performing locomotion tasks. Using sensor data we learn error terms at the level of rigid body dynamics and actuation dynamics. The learning framework deals with the hybrid nature of legged systems given by different contact configurations: We use the projection of the rigid body dynamics into a subspace consistent with the contact constraints. The equations of motion in such subspace do not depend on the contact forces, allowing to formulate a learning problem where force sensor data is not required. Additionally, we propose to use the columns of end-effector Jacobians as basis vectors, obtaining a model that generalizes across contact configurations. Both Locally Weighted Projection Regression and Sparse Gaussian Process Regression are used as supervised learning techniques. As application of the learned model, an inverse dynamics control method is extended. Hardware experiments with a quadruped robot show reduced RMS tracking error and a significant reduction in RMS feedback effort during base-only, walking, and trotting motions.ISSN:2377-376
    corecore