14 research outputs found

    On Optimal Anticodes over Permutations with the Infinity Norm

    Full text link
    Motivated by the set-antiset method for codes over permutations under the infinity norm, we study anticodes under this metric. For half of the parameter range we classify all the optimal anticodes, which is equivalent to finding the maximum permanent of certain (0,1)(0,1)-matrices. For the rest of the cases we show constraints on the structure of optimal anticodes

    Limited-Magnitude Error-Correcting Gray Codes for Rank Modulation

    Full text link
    We construct Gray codes over permutations for the rank-modulation scheme, which are also capable of correcting errors under the infinity-metric. These errors model limited-magnitude or spike errors, for which only single-error-detecting Gray codes are currently known. Surprisingly, the error-correcting codes we construct achieve a better asymptotic rate than that of presently known constructions not having the Gray property, and exceed the Gilbert-Varshamov bound. Additionally, we present efficient ranking and unranking procedures, as well as a decoding procedure that runs in linear time. Finally, we also apply our methods to solve an outstanding issue with error-detecting rank-modulation Gray codes (snake-in-the-box codes) under a different metric, the Kendall Ο„\tau-metric, in the group of permutations over an even number of elements S2nS_{2n}, where we provide asymptotically optimal codes.Comment: Revised version for journal submission. Additional results include more tight auxiliary constructions, a decoding shcema, ranking/unranking procedures, and application to snake-in-the-box codes under the Kendall tau-metri

    Error-Correction in Flash Memories via Codes in the Ulam Metric

    Full text link
    We consider rank modulation codes for flash memories that allow for handling arbitrary charge-drop errors. Unlike classical rank modulation codes used for correcting errors that manifest themselves as swaps of two adjacently ranked elements, the proposed \emph{translocation rank codes} account for more general forms of errors that arise in storage systems. Translocations represent a natural extension of the notion of adjacent transpositions and as such may be analyzed using related concepts in combinatorics and rank modulation coding. Our results include derivation of the asymptotic capacity of translocation rank codes, construction techniques for asymptotically good codes, as well as simple decoding methods for one class of constructed codes. As part of our exposition, we also highlight the close connections between the new code family and permutations with short common subsequences, deletion and insertion error-correcting codes for permutations, and permutation codes in the Hamming distance

    Deterministic Computations on a PRAM with Static Processor and Memory Faults.

    Get PDF
    We consider Parallel Random Access Machine (PRAM) which has some processors and memory cells faulty. The faults considered are static, i.e., once the machine starts to operate, the operational/faulty status of PRAM components does not change. We develop a deterministic simulation of a fully operational PRAM on a similar faulty machine which has constant fractions of faults among processors and memory cells. The simulating PRAM has nn processors and mm memory cells, and simulates a PRAM with nn processors and a constant fraction of mm memory cells. The simulation is in two phases: it starts with preprocessing, which is followed by the simulation proper performed in a step-by-step fashion. Preprocessing is performed in time O((mn+log⁑n)log⁑n)O((\frac{m}{n}+ \log n)\log n). The slowdown of a step-by-step part of the simulation is O(log⁑m)O(\log m)

    On the Labeling Problem of Permutation Group Codes Under the Infinity Metric

    Full text link
    corecore