75 research outputs found

    Tables of subspace codes

    Get PDF
    One of the main problems of subspace coding asks for the maximum possible cardinality of a subspace code with minimum distance at least dd over Fqn\mathbb{F}_q^n, where the dimensions of the codewords, which are vector spaces, are contained in K⊆{0,1,…,n}K\subseteq\{0,1,\dots,n\}. In the special case of K={k}K=\{k\} one speaks of constant dimension codes. Since this (still) emerging field is very prosperous on the one hand side and there are a lot of connections to classical objects from Galois geometry it is a bit difficult to keep or to obtain an overview about the current state of knowledge. To this end we have implemented an on-line database of the (at least to us) known results at \url{subspacecodes.uni-bayreuth.de}. The aim of this recurrently updated technical report is to provide a user guide how this technical tool can be used in research projects and to describe the so far implemented theoretic and algorithmic knowledge.Comment: 44 pages, 6 tables, 7 screenshot

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    High-rate self-synchronizing codes

    Full text link
    Self-synchronization under the presence of additive noise can be achieved by allocating a certain number of bits of each codeword as markers for synchronization. Difference systems of sets are combinatorial designs which specify the positions of synchronization markers in codewords in such a way that the resulting error-tolerant self-synchronizing codes may be realized as cosets of linear codes. Ideally, difference systems of sets should sacrifice as few bits as possible for a given code length, alphabet size, and error-tolerance capability. However, it seems difficult to attain optimality with respect to known bounds when the noise level is relatively low. In fact, the majority of known optimal difference systems of sets are for exceptionally noisy channels, requiring a substantial amount of bits for synchronization. To address this problem, we present constructions for difference systems of sets that allow for higher information rates while sacrificing optimality to only a small extent. Our constructions utilize optimal difference systems of sets as ingredients and, when applied carefully, generate asymptotically optimal ones with higher information rates. We also give direct constructions for optimal difference systems of sets with high information rates and error-tolerance that generate binary and ternary self-synchronizing codes.Comment: 9 pages, no figure, 2 tables. Final accepted version for publication in the IEEE Transactions on Information Theory. Material presented in part at the International Symposium on Information Theory and its Applications, Honolulu, HI USA, October 201

    Constructions of q-Ary Constant-Weight Codes

    Full text link
    This paper introduces a new combinatorial construction for q-ary constant-weight codes which yields several families of optimal codes and asymptotically optimal codes. The construction reveals intimate connection between q-ary constant-weight codes and sets of pairwise disjoint combinatorial designs of various types.Comment: 12 page

    A survey of complex generalized weighing matrices and a construction of quantum error-correcting codes

    Full text link
    Some combinatorial designs, such as Hadamard matrices, have been extensively researched and are familiar to readers across the spectrum of Science and Engineering. They arise in diverse fields such as cryptography, communication theory, and quantum computing. Objects like this also lend themselves to compelling mathematics problems, such as the Hadamard conjecture. However, complex generalized weighing matrices, which generalize Hadamard matrices, have not received anything like the same level of scrutiny. Motivated by an application to the construction of quantum error-correcting codes, which we outline in the latter sections of this paper, we survey the existing literature on complex generalized weighing matrices. We discuss and extend upon the known existence conditions and constructions, and compile known existence results for small parameters. Some interesting quantum codes are constructed to demonstrate their value.Comment: 33 pages including appendi

    Partial spreads and vector space partitions

    Get PDF
    Constant-dimension codes with the maximum possible minimum distance have been studied under the name of partial spreads in Finite Geometry for several decades. Not surprisingly, for this subclass typically the sharpest bounds on the maximal code size are known. The seminal works of Beutelspacher and Drake \& Freeman on partial spreads date back to 1975, and 1979, respectively. From then until recently, there was almost no progress besides some computer-based constructions and classifications. It turns out that vector space partitions provide the appropriate theoretical framework and can be used to improve the long-standing bounds in quite a few cases. Here, we provide a historic account on partial spreads and an interpretation of the classical results from a modern perspective. To this end, we introduce all required methods from the theory of vector space partitions and Finite Geometry in a tutorial style. We guide the reader to the current frontiers of research in that field, including a detailed description of the recent improvements.Comment: 30 pages, 1 tabl

    Advanced and current topics in coding theory

    Get PDF
    • …
    corecore