3 research outputs found

    Spectrum of Sizes for Perfect Deletion-Correcting Codes

    Full text link
    One peculiarity with deletion-correcting codes is that perfect tt-deletion-correcting codes of the same length over the same alphabet can have different numbers of codewords, because the balls of radius tt with respect to the Levenshte\u{\i}n distance may be of different sizes. There is interest, therefore, in determining all possible sizes of a perfect tt-deletion-correcting code, given the length nn and the alphabet size~qq. In this paper, we determine completely the spectrum of possible sizes for perfect qq-ary 1-deletion-correcting codes of length three for all qq, and perfect qq-ary 2-deletion-correcting codes of length four for almost all qq, leaving only a small finite number of cases in doubt.Comment: 23 page

    Construction of I-Deletion-Correcting Ternary Codes

    Get PDF
    Finding large deletion correcting codes is an important issue in coding theory. Many researchers have studied this topic over the years. Varshamov and Tenegolts constructed the Varshamov-Tenengolts codes (VT codes) and Levenshtein showed the Varshamov-Tenengolts codes are perfect binary one-deletion correcting codes in 1992. Tenegolts constructed T codes to handle the non-binary cases. However the T codes are neither optimal nor perfect, which means some progress can be established. Latterly, Bours showed that perfect deletion-correcting codes have a close relationship with design theory. By this approach, Wang and Yin constructed perfect 5-deletion correcting codes of length 7 for large alphabet size. For our research, we focus on how to extend or combinatorially construct large codes with longer length, few deletions and small but non-binary alphabet especially ternary. After a brief study, we discovered some properties of T codes and produced some large codes by 3 different ways of extending some existing good codes
    corecore