
Construction of I-Deletion-Correcting Ternary Codes

Zhiyuan Li

Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Mathematics and Science, Brock University
St. Catharines, Ontario

© 2011

Abstract

Finding large deletion correcting codes is an important issue in coding the­

ory. Many researchers have studied this topic over the years. Varshamov

and Tenegolts constructed the Varshamov-Tenengolts codes (VT codes) and

Levenshtein showed the Varshamov-Tenengolts codes are perfect binary one­

deletion correcting codes in 1992. Tenegolts constructed T codes to handle

the non-binary cases. However the T codes are neither optimal nor perfect,

which means some progress can be established. Latterly, Bours showed that

perfect deletion-correcting codes have a close relationship with design theory.

By this approach, Wang and Yin constructed perfect 5-deletion correcting

codes of length 7 for large alphabet size. For our research, we focus on how

to extend or combinatorially construct large codes with longer length, few

deletions and small but non-binary alphabet especially ternary. After a brief

study, we discovered some properties of T codes and produced some large

codes by 3 different ways of extending some existing good codes.

Acknow ledgement

I wish to express my greatest appreciation to my supervisor, Professor Sheri­

dan Houghten. She guided me into this interesting area and provided me

precious experience. Without her encouragement and suggestions, I could

not finish my research.

I would like to acknowledge the help of my supervisory committee: Professor

Ke Qiu and Professor Michael Winter. I also want to thank the staff of the

computer science department for various supports.

Finally, I am forever grateful to my parents and all my family members for

their endless understanding. I would like to deliver my acknowledge to all

my friends.

Contents

Abstract

Acknowledgement

List of Tables

List of Figures

1 Introduction

1.1 Codes defined using Hamming distance

1.2 Codes Defined Using Insertion/Deletion Distance

2 Background

2.1 Deletion Correcting Codes

2.2 Varshamov-Tenegolts codes

2.3 Tenegolts Codes.

2.4 Design Theory ..

2.5 Two Thivial Construction and Extensions.

1

2

6

7

8

9

13

15

15

22

26

31

33

CONTENTS

3 Difficulties in Construction of Perfect Codes

4 A Simple Construction for Ternary Codes

4.1 Definitions of S Codes

4.2 Correctness of S Codes

4.3 Decoding of S Codes .

5 The Extension of T Codes

5.1 Properties and Hypothesis

5.2 One Extendable Codeword.

6 Results and Implementations

6.1 Results

6.2 Implementation

7 Conclusion and Future Work

Bibliography

38

46

47

48

57

61

61

78

83

83

86

89

91

4

List of Tables

3.1 Different Types of Words of Length 3

3.2 The Construction of Perfect Codes of Length 3.

41

43

4.1 The Size of S Codes. .. 60

5.1 To,o(5) Code ... 65

5.2 The Sizes of T(3) 66

5.3 The Sizes of T(4) 66

5.4 The Sizes of T(5) 66

5.5 The Sizes of T(6) 67

5.6 The Sizes of T(7) 67

5.7 The Sizes of T(8) 68

5.8 The Sizes of T(9) 68

5.9 The Sizes of T(10) 68

5.10 The Uncovered Errors of Ts(4), Ts(5) and Ts(6) 74

5.11 7 Examples of Extendable Errors 76

5.12 The Number of Uncovered Errors and Extendable Errors .. 77

LIST OF TABLES

6.1 The Comparison of Different Codes 84

6.2 The Optimal Extensions of T(5) . 85

6.3 The Optimal Extensions of T(6) . 85

6.4 The Optimal Extensions of T(7) . 85

6.5 The Optimal Extensions of T(8) . 86

6.6 The Optimal Extensions of T(9) . 86

6.7 The Optimal Extensions of T(lO) . 87

6

List of Figures

1.1 The procedure of encoding and decoding. . 9

1.2 Hamming Space 13

1.3 Synchronization Error 14

2.1 Deletion Space 16

2.2 Spheres 20

2.3 Perfect and Optimal Codes of Length 3 . 21

2.4 Backtracking Algorithm 36

3.1 The Words of Type "AAB" 40

3.2 The Words of Type "ABA" 40

3.3 The Words of Type "ABC" 40

3.4 Perfect Codes of Length 3 and 4 . 45

Chapter 1

Introduction

In this chapter we introduce the basics of coding theory and give a brief

picture of how a code works. Some traditional codes which are based on

Hamming distance will be discussed.

Coding theory is a study that focuses on correcting errors during data trans­

mission and storage. It adds some redundancy symbols to a message to

correct errors. A code is defined by a code book, which is a set of codewords.

A codeword is a string of information symbols and redundancy symbols. vVe

will provide the formal definitions in the next section. A word is a string,

a sequence or a vector. A code sometimes defines an encoding and decoding

algorithm, but not necessarily.

Suppose we wish to send a message over a channel. Channel is a general idea

of hardware. For example, it can be a telephone line or a CD. When sending

a message, the message will first be encoded to produce a codeword. Since

CHAPTER 1. INTRODUCTION

the channel is noisy, some errors might be added to the codeword during

transmission. Finally, the received string will be decoded back to the orig­

inal message by the decoding algorithm. See Figure 1.1 for a depiction of

this. process.

Encode Transmit Deco(le
:....-....,--.......... --...,

I-_~. Receivet:! wmtor
I---~ c(')!:Ie)Nord r---,.,-+lMessage

.'--_--' codeword +errqf

Figure 1.1: The procedure of encoding and decoding.

1.1 Codes defined using Hamming distance

In 1950, Hamming constructed the first error correcting code, named the

Hamming code which corrects a single substitution error. Codes correct­

ing substitution errors are based on Hamming distance, which is defined as

follows.

Definition 1.1.1. The Hamming distance between two words is the number

of different corresponding symbols.

Example 1.1.1. 1001 and 1101 are two words with distance 1. They differ

at the second symbol.

And we further define vector space, errors, minimum distance, and code as

follows. After the definitions, we will provide an example. In general all pos­

sible symbols belong to a given alphabet. For Hamming codes, the alphapet

9

CHAPTER 1. INTRODUCTION

is a finite field IF q. When q = 2 all symbols are either 0 or 1 so we have a

binary code.

Definition 1.1.2. The vector space of all n-tuples over the finite field lFq is

denoted by ~.

Definition 1.1.3. All the words in the vector space except the codewords

are error vectors or errors.

Definition 1.1.4. The minimum distance of a code is the minimal distance

between any two codewords.

Definition 1.1.5. A q-ary code of length n is a subset of lF~. Each n-tuple is

a codeword. If the minimum distance of a code is d, then the code is denoted

by (n, d)q code.

Definition 1.1.6. If the minimum distance of a code is d, then the sphere

of radius l (d - 1) /2 J about a codeword is a set of words such that every

word inside the sphere has distance less than or equal to l (d - 1) /2 J to the

codeword.

Every word e in the sphere for a given codeword w will be corrected to w,

because e has distance less than or equal to l(d - 1)/2J to wand distance

larger than l(d - 1)/2J to other codewords.

Definition 1.1. 7. If the minimum distance of a code is measured by Ham­

ming distance, then this code is substitution code.

10

CHAPTER 1. INTRODUCTION

So, a sphere of a word in a substitution code is a set of vectors within the

same vector space.

We now define optimal and perfect and provide an example of a code with

these attributes.

Definition 1.1.8. A (n, d)q code is perfect if every q-ary vector of length

n has distance less than or equal to L(d - 1)/2J to exactly one codeword.

This means every possible vector of length n can be corrected by exactly one

codeword.

Definition 1.1.9. The size of a code is the number of codewords. An (n, d)q

code is optimal if there is no code that has the same length and alphabet and

corrects the same number of errors, but has larger size.

Example 1.1.2. Consider the binary code {000,111}. This code has length

3 and minimum distance 3, and thus can correct one error. It has two

codewords 000 and 111, so its size is 2. If the received message is one of

{000,001,010,100}, then it is corrected to 000, and if the received message is

one of {110,101,011,111} then it is corrected to 111. Therefore the sphere of

radius 1 about 000 contains {000,001,01O,100}, while the sphere about 111

contains {111, 11 0,10 1, ° 11 }. Since all possible words of length 3 are in these

spheres, the code is perfect. Also, there is no code with the same attributes

and larger size, so this code is optimal.

A perfect (n, d)q code has the following attributes:

1. The number of substitution errors it corrects is l (d - 1) /2 J .

11

CHAPTER 1. INTRODUCTION

2. The size of a sphere of radius L(d - 1)/2J is :

(1 * (q - 1) + (7) * (q - 1) + (~) * (q - 1)

+(~) * (q - 1) + ... + (L(d _n1)/2J) * (q - 1) (1.1)

There is a relationship between perfect codes and optimal codes. Being

perfect is a sufficient condition for the code to be optimal.

Theorem 1.1.1. If a code is a perfect substitution code, then it is also op­

timal.

Proof. Assume C is a perfect (n, d)q code. The size of the entire space is qn,

which is fixed. The size of a sphere is also fixed by Equation 1.1. Every

q-ary word is in exactly one sphere. Furthermore, there are no gaps between

spheres .

. '. We cannot add other sphere into the space of C .

. '. There is no another code which has larger size .

. '. C is optimal. D

We need to notice that optimal codes are not always perfect. For some length

and alphabets, perfect codes may not exist, but we can still find the optimal

one by exhaustive search.

Consider the graph in which the set of vertices are all the binary words of

length n, and in which there is an edge from word x to word y if and only if x

is Hamming distance 1 from y. This graph is a hypercube. Figure 1.2 shows

12

CHAPTER 1. INTRODUCTION

the Hamming space for binary words of length 3. Given code {OOO,111}, the

four words on the top right are in one sphere and the other four are in the

other sphere.

Figure 1.2: Hamming Space

Many of the best substitution codes are linear codes. This type of code is

defined as follows.

Definition 1.1.10. A code is linear if every linear-combination of codewords

is also a codeword.

The Hamming code is an example of a linear code.

1.2 Codes Defined Using Insertion/Deletion

Distance

Substitution errors are not the only type of errors. For example, when the

sender and receiver are not well synchronized, this causes deletion or insertion

13

CHAPTER 1. INTRODUCTION

of symbols. If the received word is shorter or longer than the sent codeword,

the traditional codes, which are based on Hamming distance, will not work

any more. As a result, deletion correcting codes are studied. These codes are

based on insertion/deletion distance.

Definition 1.2.1. The insertion/deletion distance is the minimum number

of deletions or insertions required to transform one string into another.

An example is shown in Figure 1.3. A sender transmits a word "0100100111",

but the receiver is not well synchronized with the sender. It starts at the

third bit. The first two bits are not read by the receiver. The fundamentals

of deletion correcting codes are explained in Chapter 2.

Message;

, J , , 4 , l , , ,
1 0 11 I 0 I 0 .1 1 I Q I Q 11 ! 1 III

t f 1f ff tf

Figure 1.3: Synchronization Error

14

Chapter 2

Background

2.1 Deletion Correcting Codes

In this section we will introduce the fundamentals of deletion correcting

codes. For further information, see[7, 8, 9].

The insertion/deletion distance, as defined in Definition 1.2.1, measures the

distances between strings. It is a metric on the set of strings from the alpha­

bet.

Example 2.1.1. Word x = 1010 and y = 1011 have distance 2. In this case

there are multiple ways to transform x into y, such as deleting all symbols

in 1010 and inserting all symbols of 1011 back. This takes 4 deletions and 4

insertions. But the shortest transformation is removing the last 0 and adding

1 at the end.

This distance can be shown as a graph named the insertion/deletion space.

CHAPTER 2. BACKGROUND

Vertices are words and two vertices are adjacent if and only if they have inser­

tion/deletion distance 1 (see Figure 2.1). Since an insertion is the inverse of

Length 0 Length 1 Length 2 Length 3

________ 000

~OO 001

o 010

/ 01~-~~Ol.1

x
100

10

1 101

~11 110

-------111

Figure 2.1: The deletion space, A means a string with length zero.

a deletion, we will only discuss deletion errors and deletion correcting codes.

The deletion correcting codes that we studied are not generally linear codes.

There are two kinds of deletion correcting codes: variable length and fixed

length. The variable length means the codewords in a code may have differ­

ent lengths with the length of the code defined as the length of its longest

codeword. If all the codewords must have the same length, then the code is

fixed length.

Example 2.1.2. The code {OOO,101} is a I-deletion correcting fixed length

code. It corrects all single deletions that create words of length 2. The words

16

CHAPTER 2. BACKGROUND

{a 1, 10, 11} are all corrected to 101, and 00 is corrected to 000. Since the

two codewords have the same length, the code is a fixed length code.

Definition 2.1.1. An error for an (n-t, n, q)-code is a word oflength 2': n-t.

Definition 2.1.2. Correcting an error is the process of replacing an error by

a codeword.

Example 2.1.3. The code {0000,101} is a deletion correcting variable length

code, since the word 101 has length 3, while the word 0000 has length 4.

In our research, fixed length codes are studied. So, in the following chapters,

when we say deletion correcting codes, it simply means fixed length codes.

Now we define notation for deletion correcting codes:

Definition 2.1.3. An (n-t, n, q)-code is a deletion correcting code oflength

n, alphabet size q and correcting t deletions.

Definition 2.1.4. A sphere of a codeword w in an (n - t, n, q)-code is a set

of words such that each of the words has deletion distance :::; t to w.

The definition of perfect and optimal can be applied from traditional codes

to deletion correcting codes as follows:

Definition 2.1.5. An (n - t, n, q)-code is perfect if all of the words of length

n - t are in exactly one sphere about a codeword.

Definition 2.1.6. The minimum distance of a deletion correcting code is

the minimum insertion/deletion distance between any two codewords.

17

CHAPTER 2. BACKGROUND

Example 2.1.4. {ODD, 101} is a perfect (2,3, 2)-code. There are 4 possible

errors: 00 corrected by 000 and 01,10,11 all corrected by lOI.

Definition 2.1. 7. A deletion correcting code is optimal if there is no another

code which has the same length and alphabet and corrects the same number

of deletions but has larger size.

We also need to provide the formal definitions for subsequence, supersequence

and a run of a codeword.

Definition 2.1.8. Let w be a word of length n and w' be a word of length

n - t. If w' has t deletion distance to w, then w' is a subsequence of wand

w is a supersequence of w'.

Example 2.1.5. Suppose we have two words 10110 and 100. These two

words have deletion distance 2. So 100 is a subsequence of 10110 and 10110

is a supersequence of 100.

Definition 2.1.9. A run in a word is a maximal contiguous sequence of the

same symbol.

Example 2.1.6. The word 100110 has four runs: 1, 00, 11 and o. For the

second run, 00 is maximal, but 0 is not, because it can be extended. If

we remove one 0 from the second run and one 1 from the third run, then

we have a subsequence: 1010. Whether the first or second 0 is removed

from the second run, we create the same the result. The same occurs when

removing the first or second 1 from the third run: we will still get the same

subsequence.

18

CHAPTER 2. BACKGROUND

Therefore, we have the following observation:

Observation 2.1.1. Deletions in the same run but at different positions

produce the same subsequence.

Proof. Let C = {CIC2C3 ... CmCm+1 ... cm+p ... en} be a string and CmCm+1",cm+p

be a run of the string, in which each symbol is x.

Let Ca = {CIC2C3",CmCm+l ... Cm+a-lCm+a+l",Cm+p",cn} and

Cb = {CIC2C3 ... CmCm+l ... Cm+b-lCm+b+1"'Cm+p ... cn} be two substrings of C(m :::;

a,b:::; p and a =1= b).

Therefore the beginning and ending of Ca and Cb are the same, which are

{CIC2C3".Cm-l} and {cm+P+1 ... en}.

By the definition of a run, the symbols of CmCm+l .. 'Cm +p are the same, which

is a string of x's of length p.

Therefore {CmCm+l ... Cm+a-lCm+a+l} and CmCm+l ... Cm+b-lCm+b+l",Cm+p are two

strings of x's of length p - 1, which are the same.

Therefore Ca is the same as Cb.

Since a =1= b, deletions in the same run but at different positions provide the

same subsequence. o

This observation also shows the number of subsequences of a word is closely

related to the number of the runs. Therefore the number of error vectors and

the size of a code is related to the number of runs. If it is I-deletion correcting

code, then the size of a sphere about a codeword is equal to the number of

runs in the codewords. Since the number of runs in different codewords are

19

CHAPTER 2. BACKGROUND

not necessarily equal, the sizes of the spheres are also not necessarily equal.

Even the vectors in a sphere have different lengths. The codewords are al­

ways longer than the errors. Figure 2.2 shows an example of the spheres

of different sizes. If 101 is selected as a codeword, it corrects 10, 01 and II.

This sphere has size 4. In the sphere of 000, it has only two words: 000 and

00.

This is totally different from the traditional (Hamming) codes. As we previ-

Length 0 Length 1 Length 2 Length 3

o

/
X

~
1

Figure 2.2: Spheres

ously mentioned, the size of the spheres of substitution codes are the same.

As a result, Theorem 1.1.1 cannot be applied to deletion correcting codes.

For a particular perfect deletion correcting code, some codewords with many

runs may be replaced by more codewords with fewer runs. Also, some error

20

CHAPTER 2. BACKGROUND

vectors, which can be corrected in the perfect code may not be corrected

when this happens.

Figure 2.3 shows an example of such a case. 01, O2 and 0 3 are three

I-deletion correcting codes of length 4. 0 1 corrects all words of deletion dis-

tance 1, so it is perfect. However it is not optimal. If we want to extend

the size of 01, then we find the size of the spheres of codeword 0010 and

1011 are too large. We can replace 0010 by 0000 and 1011 by 1111. Each of

them has 2 fewer runs and the size of the sphere shrinks by two. As a re­

sult, {001,01O,011,101} are not covered. Then we can add another codeword

0011, which corrects 001 and 011. So, this is code O2• After searching the

entire deletion space, we will find there is no code that has larger size than

O2 , which means O2 is optimal. But it is not perfect, words 010 and 101 are

not covered. We can also make some changes in order to cover all the error

vectors. 0011 and 1100 are replaced by 1001 and 0110. And now we have 0 3

which is perfect and optimal at the same time.

Perfect blil:not optimal
tl=tllQQ.1:011,00101

~:7 0010

011~ 1100
100

101

110~ 1011

111

Optimal but not perfect
C2=(OOOo;o011;1100,ll1i}

ooo.~
001 . 0000

010 ~ OOil
bii~ ..

l00~.
101 .~ 1100
110~·

11;1 _ -.~. -- 1111

P~rf$ct anQ Optimal
C3={bOOO,10oi,011b,1111}

000 ---- .~ iJOOO:

~~::
110·---llJ1
111~

Figure 2.3: Perfect and Optimal Codes of Length 3

21

CHAPTER 2. BACKGROUND

2.2 Varshamov-Tenegolts codes

In this chapter, we will introduce Varshamov- Tenegolts codes (VT codes for

short). Varshamov and Tenegolts constructed these codes in 1965 [11] and

Levenshtein did a lot of research, gave bounds for the codes and proved that

all VT codes are perfect in 1992 [6]. However, a conjecture about the size

of the VT codes is still unproven, as mentioned later in this section. This

motivation drives us to further study the codes. The definition of checksum

and VT codes is as follows.

Definition 2.2.1. Let n and a be two integers, and 0 ~ a ~ n. The checksum

(J' of a binary word (Xl, X2, ... , xn) is 2.:~1 iXi. The Varshamov- Tenegolts code

VTa (n) contains all binary words such that

(J' - a(mod n + 1)

Example 2.2.1. Let a=1 and n=4. Then VT1(4) is {1000, 111O,0101}.

For each of the codewords:

4

1000: I:>Xi = 1 + 0 + 0 + 0 = 1 = 1 (mod 4 + 1)
i=l

4

111 0: 2: iXi = 1 + 2 + 3 + 0 = 6 = 1 (mod 4 + 1)
i=l

22

CHAPTER 2. BACKGROUND

4

0101: ~:::>Xi = a + 2 + a + 4 = 6 - 1 (mod 4 + 1)
i=l

As we can see, 1000 and 1110 each have 2 runs and 0101 has 4 runs. The total

is 8 = 23 runs, which is the number of binary strings of length 3. Recall that

for a 1-deletion correcting code, the size of the sphere about the codewords

is equal to the number of runs in the codewords. So all words of length 3

can be corrected. Therefore VT1 (4) is a perfect 1-deletion correcting code,

because it corrects 1 deletion and the number of runs is equal to the number

of errors that can be corrected.

Abdel-Ghaffar and Ferreira [2] showed the VT codes can be provided by sys­

tematic encoding. A message of length i is encoded into a VTo (n) codeword

of length n =i + llog(i + 2)J + 1. The algorithm is as follows.

1. Find llog(i + 2)J + 1 redundance bits at position 2r , where

r = 1,2,3 ... , llog(i + 2)J + 1

2. Let the message be (mlm2m3 ... mi) and the corresponding codeword be

(Clc2mlc4m2 ... mi) of length n. And Cl + 2C2 + 4C4 + ... - a - (3ml +

5m2 + 6m3 + ... + nmi) - 1 mod n + 1. There might be multiple choices

for (CIC2C4 ...), and anyone works. So, we can use the lexicographically

least one.

3. Then put C and m together to get the codeword.

Example 2.2.2. Suppose the message is 011001. Then the codeword is

23

CHAPTER 2. BACKGROUND

C = (CIC20C4110cs01) and n = 10. Let a = 0, by equation

o - (3 x 0 + 5 x 1 + 6 x 1 + 7 x 0 +

9 x 0 + 10 x 1) - 1 (mod 11)

We have CIC2C4CS = 1000. Therefore the codeword is 1000110001.

The decoding algorithm, given by Levenshtein in 1965 [5], is as follows.

1. Assume a word C = (CIC2 ... en) is transmitted and d = (d1d2 ... dn _ 1) is

received, where symbol Cp is missing. Suppose the checksum of C is a,

the checksum of d is a' = E~::ll ic~ and the weight of c' is w = Er:::l1 c~.

2. Since the deletion position p is no larger than the original code length

n, therefore the deficiency in the checksum is no smaller than 0 and

no larger than n. So we can get the original checksum a = r a' / (n +

1) 1 (n + 1) and deficiency in the checksum ~a = a - a'.

3. If ~a is less than or equal to w, that is a 0 was deleted, then we insert

it to the left of the rightmost ~a l's. Otherwise, a 1 was deleted, then

we insert it to the right of the leftmost (~a - W - 1) O's.

Following the previous example of encoding, assume after transmission, the

second bit of the codeword is missing, so that the receiver only received

100110001. The new checksum is a' = 1+4+5+9 = 19 and the weight is w =

24

CHAPTER 2. BACKGROUND

1+1+1+1 = 4. Then, the original checksum is 0" = f19/(10+1)l(1O+1) = 22.

The deficiency is ~O" = 3. Since ~O" ::; W, a 0 was deleted, insert 0 to the left

of the rightmost 31's, that is between the 3rd and 4th bits. So, the received

vector is decoded into 1000110001.

Here are some properties of VT codes.

Theorem 2.2.1. (Levenshtein 1992 [6})

VTa(n) are perfect I-deletion correcting binary codes for any n, a E Nand

o ::; a ::; n.

Studying optimality of deletion-correcting codes is much harder than for

Hamming distance codes, since, as we mentioned, the spheres of the code-

words are not of fixed size. But still, some upper bounds are obtained for

the VT codes.

From the definition of VT codes, the sum of every string is taken modulus

n + 1. This means the binary space is divided into n + 1 subsets. Therefore,

if the size of a VT code is denoted by I VTa (n) I, then for a fixed n, the size

of the largest VT code has

It is also known that

Theorem 2.2.2. (Varshamov 1965 [ll})

IVTo(n) I 2:: IVTa(n) I for all 0::; a ::; n.

25

CHAPTER 2. BACKGROUND

Therefore

In contrast, Levenshtein [9] provided an approximate size for optimal deletion

correcting codes. Let A(n, t) be the size of the optimal t-deletion correcting

binary code of length n. Then

2n

A(n, t) rv -, as n -+ 00
n

As a result, for large n, the VTo(n) codes are close to optimal. But it has

yet to be proven that VTo (n) are always optimal. This remains a conjecture.

See [9] for further discussions.

2.3 Tenegolts Codes

In the previous chapter, we introduced a perfect and nearly optimal I-deletion

correcting binary code. However, even though the VT codes have many nice

properties, they can only handle the binary cases. In this chapter we will

demonstrate Tenegolts codes [IO](T codes for short), which can be viewed as

an extension of VT codes correcting a single deletion for non-binary words.

Indeed, we can translate non-binary words to binary ones to avoid the diffi­

cult construction of different codes. But the non-binary space is still worth

studying, since it has various applications. For instance, DNA codes in bioin-

26

CHAPTER 2. BACKGROUND

formatics are quaternary codes.

Definition 2.3.1. [10] Let A = ala2a3 ... an be a non-binary string of length

n. It is translated into binary string ala2a3 ... an by the rule

al can be either 0 or 1. In this thesis, the first bit will be set as 1.

Word a : {aI, a2, ... , an} is a codeword of a TfJ''Y(n) code if

n

2: ai - f3 (mod q)
i=l

and
n

2:(i - l)ai - "((mod n),
i=l

where f3, "'(are integers and 0 :::; f3 < q, 0 :::; "'(< n.

The last congruence shows how a T code relates to a VT code. If C is a

codeword of TfJ''Y(n) and B = b1b2 ••• bn is the binary string translated from C,

then removing the first bit from B obtains B' = b~~ ... b~_l of length n - 1,

in other words, B' is a subsequence of B. By the definition,

27

CHAPTER 2. BACKGROUND

and

b~ * 1 + b~ * 2 + ... + b'n-l * n - 1 - "f (mod (n - 1) + 1).
- J

Therefore B' is a codeword of VT')' (n - 1).

To ensure this code does work, Tenegolts proved its correctness.

Theorem 2.3.1. (Tenegolts 1984 [10}) T codes are I-deletion correcting non-

binary codes.

Proof. The value of the lost symbol and the position are two terms which

decide the deletion. Suppose the alphabet has size q, the length of received

word is n - 1, the weight of the original word is w, the weight of the received

word is w' and the value of the lost symbol is S.

Then S = w - w' and S < q. Therefore S - f3 - w' (mod q), which is unique.

Since the related binary string is a superstring of a codeword of VT')'(n - 1),

then the position of the deletion can be decided by the decoding algorithm

of VT codes, which is also unique.

So, the correction is unique. As a result, T codes are I-deletion correcting

codes. o

From the proof, the decoding algorithm of T codes can be described as fol­

lows:

1. Let the weight of the received word be w', and the lost symbol S -

f3 - w' (mod q).

2. Let A", = 0i20i3 ... Oin-l be the associated binary word, with the first bit

28

CHAPTER 2. BACKGROUND

removed, determined by the received word. Suppose the weight of Aa

is Wa and the checksum of A is Taa.

3. Calculate the deficiency in the checksum !:lTa = rTaa/(n - 1)l(n -

1) - Taa .

4. If !:IT a is less than or equal to W a , that is a 0 was deleted, then we

insert it to the left of the rightmost !:lTa l's. Otherwise, a 1 was

deleted, then we insert it to the right of the leftmost (!:lTa - Wa - 1)

o's.

5. Suppose the insertion in the binary word is at position p, then the

insertion in the q-ary word will be in the run which is in the binary

word and contains p.

Example 2.3.1. Let q = 3, n = 7, j3 = 2 and '"Y = O. Then A = 1101200 is

a codeword since the weight W is

7

W = L = 1 + 1 + 2 + 2 = 2 (mod 3)
i=l

and the checksum of associated binary word Aa = 1101101 is

7

Ta = L (i - l)a = 1 + 3 + 4 + 6 = 0 (mod 7).
i=l

Assume the 1 at position 4 is deleted, so that A' = 110200 is received. The

associated binary word is A~ = 110101, w' = 1+1+2 = 4, Wa = 1+1+1 = 3

29

CHAPTER 2. BACKGROUND

and checksum TO" = 1 + 3 + 5 = 9. The symbol deleted is

s = 2 - w' = -2 = 1 (mod 3)

and the deficiency is

fj.TO' = f9/(7 -1)1(7 -1) - 9 = 12 - 9 = 5

which is greater than Wa = 3. So a 1 is deleted. We insert it to the right of

the leftmost 5 - 3 -1 = 1 O's which is between the third and fourth bits. For

the 3-ary word, a 1 is inserted in the third run which may be either between

o at the third bit and 2 at the fourth bit or 2 at the fourth bit and 0 at the

fifth bit. As the third run in the binary word has 2 bits, then we need a 2-bit

non-decreasing sequence. Therefore, the only possible insertion is between

the third bit and the fourth bit. Then we have 1101200 back again.

Tenengolts also discussed the size T codes. He showed that the lower bound

for the size of the best code in the class of T codes is close to optimal.

Theorem 2.3.2. (Tenegolts 1984 [10}) For fixed q and n -+ 00, the size of

the optimal I-deletion correcting code is

qn
M(q,n) ~ (1) q- *n

30

CHAPTER 2. BACKGROUND

From the construction of the codes, we know the weight is taken modulus q

and the checksum is taken modulus n. This means the entire deletion space

is divided into q * n subsets. Each subset is a T code. Therefore,

Theorem 2.3.3. (Tenegolts 1984 [10)) The largest code has size:

From the two inequalities, the largest T code is close to asymptotically opti-

mal.

However, based on the T codes we have already constructed, non of them is

optimal or perfect. Furthermore, Tenengolts did not mention how fJ and ry

affect the size of the codes and how to get the best T code. These issues will

be discussed in the next chapter.

2.4 Design Theory

In this section constructing codes from design theory is presented briefly,

since some special designs provide perfect codes. This is a part of combina­

torial mathematics. Bours [4] showed the close relationship between deletion

correcting codes and design theory. Yin and his colleagues [12, 13, 14, 15]

constructed some codes from designs. The definition of a design is given as

follows:

31

CHAPTER 2. BACKGROUND

Definition 2.4.1. A directed T-design of type T - (q, n,.\) is a pair (Q, B)

where Q is an alphabet of size q, B is a set of directed subsets(blocks) with

size n(n :::; q) of Q and every ordered subset of Q of size t is contained in

exactly .\ blocks.

Definition 2.4.2. A directed balanced incomplete block design (DBlBD) is

a directed design of type 2 - (q, n, .\).

Example 2.4.1. Let the alphabet Q = (0,1,2,3) and let B = {(0,1,2,3),

(l,0,3,2),(2,0,3,1),(3,0,2,1),(2,1,3,0),(3,1,2,0)}. SO (Q, B) is a 3 - (4,4,1) di­

rected design. The alphabet has size 4, the size of each block is 4 and every

ordered subset of size 3 is contained in exactly 1 block. The block (0,1,2,3)

has four ordered subsets of size 3: (0,1,2),(0,1,3),(0,2,3) and (1,2,3).

Let B' ={ (0,1,2,3),(3,2,1,0)}. Then, (Q, B') is a (4,4,1) DBIBD, since every

ordered set of size 2 over the alphabet Q is contained in exactly one block.

If we take .\ = 1, every ordered subset of size 2 is contained in exactly

one block. This implies a DBIBD can be converted to a perfect deletion

correcting code by adding all codewords which have only one symbol. So, we

can define another type of perfect deletion correcting code.

Definition 2.4.3. A (q, n, l)DBl BD is a perfect (2, n, q) deletion correcting

code T such that for every codeword c in T, c has no repeated symbols.

Each directed subset in the DBIBD is a codeword in T. In other words, a

32

CHAPTER 2. BACKGROUND

(q, n, l)DBIBD is a perfect deletion correcting code in which the coordinates

are different.

Since a block in a DBIBD is a set and a set cannot have two repeated symbols,

then the perfect code implied by the design has no repeated symbols in one

word. If the set of all the codewords having only one symbol is 0, then we

have T*(2, n, q) = T(2, n, q) + 01, in which T* is a perfect code with same

coordinates.

Example 2.4.2. If we take the DBIBD in example 2.4.1, B' ={0123,321O}

and let 0 = {DODO, 1111, 2222, 3333}, then T* = {DODO, 1111,2222,3333,0123,

321O} is a perfect 2-deletion correcting quaternary code of length 4.

By this idea, Wang and Yin constructed perfect 5-deletion correcting codes

of length 7 for some alphabets and Wang and Ji [13] constructed perfect

1-deletion correcting codes of length 4 for any arbitrary alphabet size.

As we can see, the perfect codes implied by DBIBDs have to correct n - 2

deletions, and have a large alphabet, short length and small size (n - 2

deletions means spheres are probably large and the size of the code is fairly

small). However, this situation is not common in reality. So, this thesis will

not focus on the construction using designs.

2.5 Two Trivial Construction and Extensions

This section will introduce two algorithms: the greedy algorithm and the

backtracking algorithm. These two algorithms can construct or extend any

33

CHAPTER 2. BACKGROUND

type of codes. But the codes produced by these two algorithms will not have

an efficient encoding or decoding algorithm. The algorithms can only ensure

the spheres will not intersect with each other. The greedy algorithm is as

follows.

1. Initialize d = minimum distance, q = the size of the alphabet, l = the

length, and value = 0 to be the increment value. Also initialize a code

C: If the program is constructing a new code, C is initialized as empty.

If the program is extending, C is initialized as the code which will be

extended;

2. For value < ql repeat Steps 3 and 4;

3. Translate value to a q-ary l-length word w;

4. If w has distance no smaller than d to all codewords in C, add w to C,

increase value by the increment and the size of C;

5. The code C is the result.

The second step repeats ql times, so the time complexity of the algorithm is

O(ql). The complexity is exponential, based on length. If it is based on the

size of the space, then it becomes linear.

The backtracking algorithm is shown as follows.

1. Initialize d = the minimal distance, q = the size of the alphabet, l =

the length, two empty codes C cur. and Cbest) a code C exi. (If the program

34

CHAPTER 2. BACKGROUND

is constructing a new code, Cexi. is initialized as empty. If the program

is extending, Cexi. is initialized as the code which will be extended.)

and value is the decimal value of the last word in Cexi. plus l(If Cexi.

is empty, value = 0);

2. Repeat Steps 3-8;

3. For value < ql repeat Steps 4 and 5;

4. Translate value to a q-ary l-length word w;

5. If w has distance no smaller than d to all codewords in Ccur. and all

codewords in Cexi., add w into Ccur., increase the size of Ccur. and value;

6. If Ccur. is "better" than Cbest , copy Ccur. to Cbest ;

7. If Ccur. is empty, the program stops and Cbest is the solution;

8. Set value to be the decimal value of the last word in Ccur. plus l.

Remove the last word from Ccur ..

Cexi. is the existing code which is being extended. Cbest provides the solution

of the algorithm. Ccur. is the code which is being processed. If the program is

constructing an optimal code, then "better" means the size of Ccur. is larger

than the size of Cbest . If the program is constructing a perfect code, "better"

means the Ccur. corrects more errors than Cbest.

The process of the algorithm is isomorphic to the depth-first search because

the structure of a code can be shown as a tree. The root of the tree is the

35

CHAPTER 2. BACKGROUND

Level 0 }

/~
Levell

/~~ ~1
0010

Level 2 0011 0101 0110

/I~ /I~
Level 3 1010 1100 1101 1100 1110 1111

I I I
Level 4 1111 1111 1111

Figure 2.4: A part of a process of a backtracking algorithm.

word A, which is the word of length zero. Each of the words on the path

from the root downwards has distance no smaller than the minimum dis-

tance of the code. And each path of the tree is a code. So, the longest path

of the tree provided by a depth-first search is the goal of the backtracking

algorithm. Suppose q = 2, l = 4 and d = 4. Figure 2.4 shows an example

of the structure. At levell, all words are candidates since each of them has

distance 4 to A. At level 2, on the branch of 0000, some words like 0011,

0101, 0110 are candidates. When the process is at one leaf node, it will rolled

back to the nearest fork and search the next branch. The search will rollback

at the leaf node of path A -+ 0000 -+ 0101 -+ 1111, because the candidates

are lexicographically increasing, even though the word 1100 has distance no

smaller than d to each of the codewords.

The time complexity of this algorithm is O(2Q\ which is extremely large,

because it is an exhaustive search. This algorithm never constructs an op-

timal code of length 5 during the experiment, even after a whole month of

36

CHAPTER 2. BACKGROUND

computing time. Thus for longer lengths, we only use this algorithm to ex­

tend the T codes. Since the T codes are very close to optimal, there are

not very many words that can be extended. The time used for extension is

acceptable. The program successfully extends the T codes, up to length 14.

The results will be discussed in chapter 5.

37

Chapter 3

Difficulties in Construction of

Perfect Codes

This chapter will demonstrate that finding a perfect code is usually very

complicated.

The first example is the construction of ternary perfect codes of length 3 that

corrects a single error. In order to make a code perfect, we need to analyze

the structure of the errors and the candidates of the codewords. Here is a

list of all words of length 2, which are the errors.

00 01 02

10 11 12

20 21 22

There are three words with 1 run and six words with 2 runs. Let Rn r be the ,

set of all words of length n with r runs and let IRn,rl be the size of the set.

CHAPTER 3. DIFFICULTIES IN CONSTRUCTION OF PERFECT
CODES

Therefore R2,1 = {OO, 11, 22} and R2,2 = {01, 02, 10, 12,20,21}.

Here is a list of all words of length 3, which are the candidates to be code-

words.

000 001 002 010 011 012 020 021 022

100 101 102 110 111 112 120 121 122

200 201 202 210 211 212 220 221 222

SO, IR3,!1 = 3, IR3,21 = 12 and IR3,31 = 12. However, not all words in R3,3

are of the same type. For example, 020 corrects 2 words with 2 runs (02,20)

and 1 word with 1 run (00) while in contrast 012 corrects 3 words with 2

runs (01,02,12). We summarize the types of candidates in Table 3. The

symbols in the "Type" column are not fixed, but represented by a letter to

show a pattern, forwards or backwards. For example, 020 and 212 are both

type ABA. We do not separate types that are the reverse of each other. For

example, types AAB and ABB are not separate since both of them have 2

substrings, one with 1 run, and the other with 2 runs.

However, not all the candidates with the same type can be chosen at the

same time. We also need to study the distance between each pair of candi-

dates.

In Figures 3.1, 3.2 and 3.3, two words are connected if they have a common

substrings by one deletion. In other words, they have distance 2 and so they

cannot be selected as codewords together. The type of "AAA" is ignored,

because it is trivial: all substrings are the same. In Figure 3.1, there are 3

cliques of size 4, which implies at most three words (one from each clique)

39

CHAPTER 3. DIFFICULTIES IN CONSTRUCTION OF PERFECT
CODES

110 ~-~--;£----:::- 011

I I
112 211

Figure 3.1: The Words of Type "AAB"

010 020

202 212

121 101

Figure 3.2: The Words of Type "ABA"

012 021

I I
102 201

I I
210 120

Figure 3.3: The Words of Type "ABC"

40

CHAPTER 3. DIFFICULTIES IN CONSTRUCTION OF PERFECT
CODES

Type Size Words
R3,1 AAA 3 000 111

222
R3,2 AAB 12 001 002

110 112
220 221
100 200
011 211
022 122

R33 ABA 6 OlD 020 ,
lD1 121
202 212

ABC 6 012 021
lD2 120
201 2lD

Table 3.1: Different types of words of length 3.

can be chosen as codewords together. Similarly, no more than 3 words can

be chosen from type "ABA", because there are 3 cliques of size 2, and no

more than 2 from type" ABC" , since there are 2 cliques of size 3.

Suppose the construction strategy is to consider the candidates with the most

runs first, i.e. "ABA", "ABC", "AAB" then "AAA" and follow the backtrack-

ing algorithm. The stages are shown in Table 3.2.

Stage Codeword Types Covered errors Uncovered errors

1 3x "ABA" 6x "AB" 3x "AA" O-Perfect

As shown in Figure 3.2, type "ABA" has 6 words and 3 can be cho-

sen at the same time. Two perfect codes are found: {OlD, 202, 121}

and {020,212,101}

41

CHAPTER 3. DIFFICULTIES IN CONSTRUCTION OF PERFECT
CODES

2 2x "ABC" I 6x"AB" I 3x "AA" -Not perfect

2 words of type "ABC" can be chosen.

3 2x "ABC" 3x "AAA" 16X "AB" 3x "AA" I o Perfect

Type "ABA" or "AAB" cannot be chosen, since all

"AB"'s are corrected. This stage has three different

codes: {012,210,000,111,222}, {102,201,000,111,222} and

{120,021,000,111,222}.

4 2x "ABA" !4X "AB" 2x "AA" I 2x "AB" 1x "AA"

The case of 2x "ABC" is finished.

5 2x"ABA" 1x"AAB" 15X "AB" 3x"AA" I 1 x "AB"

This code will never be perfect, since no word of length 3 can correct

only a single type "AB" word.

6 2x"ABA" 1x"AAA" 14x "AB" 3x"AA" I 2x"AB"

This case is replacing a type of "ABA" by "AAA" from the case

of stage 1. As a result, if the "AAA" is 000, the remaining "AB"

will be 12 and 21; ifthe "AAA" is 111, the remaining "AB" will be

02 and 20; and if the "AAA" is 222, the remaining "AB" will be

10 and 01. As we can see, using a single word of type "AAB" to

handle this case is impossible. So, this case will never be perfect.

7 1x"ABC" I 3x"AB" I 3x "AB" 3x "AA"

The case of selecting two words with 3 runs is finished at step 6.

8 1x "ABC" 2x "AAB"15X "AB" 2x "AA" I 1x "AB" 1x "AA"

42

CHAPTER 3. DIFFICULTIES IN CONSTRUCTION OF PERFECT
CODES

9

10

11

We cannot choose the third "AAB" because whatever the case is,

the third one will have distance 2 to the "ABC".

Ix "ABC" 2x"AAB" 5x "AB" 3x "AA" lx"AB"

Ix "AAA"

Never to be perfect, since no word of length 3 can correct only a

single type "AB" word.

3x"AAB" 3x "AB" 3x "AA" 3x"AB"

We have finished the cases of choosing codewords with 3 runs. And

this case will never to be perfect, because the only way to handle 3

"AB"s is adding one word of "ABC". But non of the "ABC" has

distance larger than 2 to the chosen codewords.

2x"AAB" 2x "AB" 2x "AA" 4x"AB" Ix "AA"

This case can never be perfect. It will not generate a code with

enough total runs to correct all the errors. Therefore, the whole

process stops.

Table 3.2: The construction of perfect codes of length 3.

A total of five perfect codes are found.

The process considers all cases of length 3 and discovers five perfect codes.

However, this process cannot be performed if the length is longer than 3. Not

only must the types of candidates be discussed, but also the types of errors.

As the length grows linearly, the number of cases grows exponentially and

43

CHAPTER 3. DIFFICULTIES IN CONSTRUCTION OF PERFECT
CODES

the situation becomes extremely complicated. Due to this reason, we did not

manage to find a perfect code of length 4 by hand. Fortunately, the program

found one by exhaustive search. Compared to other perfect codes (VT codes

and the perfect code of length 3), this perfect code of length 4 does not have

a regular structure. And it is totally different to the optimal code as shown

in Figure 3.4. Therefore, as we can see, constructing a perfect code is very

difficult. The first column is all the vectors of length 2, the second is all the

vectors of length 3 with codewords of a perfect code in the solid blocks and

the third one is all the codewords of a perfect code and an optimal code.

The words in blocks are codewords of the perfect code, the shaded words are

codewords of the optimal code. The word 0000 is in both the perfect code

and the optimal code.

44

CHAPTER 3. DIFFICULTIES IN CONSTRUCTION OF PERFECT
CODES

Figure 3.4: Perfect Codes of Length 3 and 4

45

Chapter 4

A Simple Construction for

Ternary Codes

In this chapter, we will illustrate a simple construction of a class of deletion­

correcting codes. The codes, named S codes, are ternary and correct 1 dele­

tion error. The size of the alphabet will be fixed at 3 for most of the codes,

since ternary codes are the main target of my research.

The methodology is similar to the construction of VT codes, but this code is

neither perfect nor optimal. Furthermore, the size is much smaller than the

size of T codes, which will be studied in Chapter 5.

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

4.1 Definitions of S Codes

Firstly, we need to define the s-checksum and s-weight, since the alphabet is

no longer binary.

Definition 4.1.1. Let n be the length of a ternary word {VI, V2, V3, ... , vn }.

The s-checksum

0,
n

sO' = L mi ,where mi = n * i,
i=1

n2 + (n + 1) * i, if Vi = 2

Definition 4.1.2. Let ki be the number of i's in the word V = {VI, V2, V3, ... , vn },

for i = 1 or 2. The s-weight of V is

sw = kl * n + k2 * (n + 1)

The S codes are defined as follows:

Definition 4.1.3. A word {VI, V2, V3, ... , vn } is a codeword of the S code of

length n if s-checksum

sO' = 0(mod(2*n2 +a*n)),where a is a non-negative integer and a < n.

47

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

4.2 Correctness of S Codes

In this section, we are going to follow the proof of VT codes [11] to prove

theS codes are I-deletion correcting. The overall idea of the proof of the VT

codes is to show the deficiency in the checksum is unique. Unfortunately, this

cannot be applied to S codes directly, since different deletions can provide the

same deficiency in the s-checksum. But we can still handle the exceptions by

the following lemmas. The lemmas show that the smallest s-checksum of a

supersequence created by inserting symbol 1 is always larger than the largest

s-checksum of a supersequence created by inserting symbol 0 and the smallest

s-checksum of a supersequence created by inserting symbol 2 is always larger

than the largest s-checksum of a supersequence created by inserting symbol

1. This result ensures the codes are working even if some exceptions occur.

Let V be a ternary word of length n-l and s-checksum (defined by Definition

4.1.1) SO'. Let V* be a supersequence of V created by a single insertion. If

a 0 is inserted at position p, 1 :::; p :::; n, the s-checksum of V* is sO'o,p. "At

position p" means after the insertion, the inserted symbol is the pth bit of V*.

In other words, the insertion is before the pth symbol in the original word.

If a 1 is inserted, the s-checksum is SO'l,p. If a 2 is inserted, the s-checksum is

S0'2,p. Since the insertion can happen at n different positions, max(sO'x) and

min(sO'x), where x = 0,1,2, denote the maximum and minimum s-checksum

created by inserting x. Suppose there are Lo O's, L1 l's and L2 2's to the left

of the insertion, and Ro O's, R1 l's and R2 2's to the right of the insertion.

48

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

So, p = L o + Ll + L2 + 1 and n = p + R o + Rl + R 2.

Lemma 4.2.1. saO,l = max(sao).

Proof. Suppose the supersequence V* is VI, V2, ... , Vp-l, 0, vp, Vp+l, ... , Vn , cre­

ated by inserting 0 at position p of V and suppose its s-checksum is sao,p. Let

VI, V2, ... , Vp_}, Vp, 0, Vp+b ... , Vn be another supersequence created by inserting

o at p + 1 and let its s-checksum be saO,p+l.

Therefore sao,p = sa + n * Rl + (n + 1) * R 2.

If vp = 0, then saO,p+1 = sa + 0 * (p + 1) + n * Rl + (n + 1) * R2 = sao,p.

If vp = 1, then Rl is decreased by 1 and saO,p+1 = sa + n * (Rl - 1) + (n +

1) * R2 < sao,p.

If vp = 2, then R2 is decreased by 1 and saO,p+l = sa + n * Rl + (n + 1) *
(R2 - 1) < sao,p.

Therefore sao,p ~ saO,p+1 for all 1 :s; p :s; n.

Therefore saO,l = max(sao). o

Example 4.2.1. Let V = 1202 and 0 is inserted,

if p = 1, then V* = 01202, n = 5 and sa = n * 2 + n2 + (n + 1) * 3 + n2 +

(n + 1) * 5 = 108;

if p = 2, then V* = 10202, n = 5 and sa = n * 1 + n2 + (n + 1) * 3 + n2 +

(n + 1) * 5 = 103;

if p = 3, then V* = 12002, n = 5 and sa = n * 1 + n2 + (n + 1) * 2 + n2 +

(n + 1) * 5 = 97;

if p = 4, then V* = 12002, n = 5 and sa = n * 1 + n2 + (n + 1) * 2 + n2 +

49

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

(n + 1) * 5 = 97;

if P = 5, then V* = 12020, n = 5 and SeT = n * 1 + n2 + (n + 1) * 2 + n2 +

(n+1)*4=91;

So the maximum s-checksum is 108, when p = 1.

Lemma 4.2.2. vp is the leftmost 0 ~ SeTl,p = min(SeTl).

Proof. SeTl,p = SeT + n * p + n * Rl + (n + 1) * R2

Ifvp = 0, thenSeTl,p+l = seT+n*(p+1)+n*R1+(n+1)*R2 = SeTl,p+n > SeTl,p.

If vp = 1, then SeTl,p+l = SeT + n * (p + 1) + n * (Rl - 1) + (n + 1) * R2 = SeTl,p.

If vp = 2, then SeTl,p+l = SeT + n * (p + 1) + n * Rl + (n + 1) * (R2 - 1) =

SeTl,p - 1 < SeTl,p.

Therefore if Ro is decreased by 1 then the s-checksum is increased by n and

if R2 is decreased by 1 then the s-checksum is decreased by 1.

However, the length of the word is n. Thus R2 will decrease by n - 1 at

most and the s-checksum will decrease by n -1 at most by the fact, which is

smaller than increment of s-checksum, if Ro is decreased by 1. In other words,

assume the right neighbor of the insertion is O. If we switch the insertion

with the 0, Ro is decreased by 1 and the s-checksum is increased by n. If

we want to reduce the s-checksum, the only way is switching with 2's to the

right. But each switching with 2 reduces the s-checksum by 1, and there

are n - 1 2's in the word at most. Therefore the s-checksum will never be

decreased back to the value before switching with O.

Therefore if SeTl,p = min(SeTl)' then Lo = 0, and

if vp is the leftmost 0, then SeTl,p = min(sO"l). D

50

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

Lemma 4.2.3. Vp-1 is the rightmost 0 -{::=> SO"l,p = max(sO"l)'

Proof. From the proof of Lemma 4.2.2, similarly, R2 will decrease by n - 1

at most and the s-checksum will decrease by n - 1 at most, which is smaller

than increment of s-checksum, if Ro is decreased by 1.

Therefore if SO"l,p = max(sO"l) , then Ro = 0, and

if Vp-1 is the rightmost 0, then SO"l,p = min(sO"l)' D

Example 4.2.2. Let V = 1202 and 1 is insterted,

if p = 1, then V* = 11202, n = 5 and sO" = n * 1 + n * 2 + n2 + (n + 1) * 3 +

n2 + (n + 1) * 5 = 113;

if p = 2, then V* = 11202, n = 5 and sO" = n * 1 + n * 2 + n2 + (n + 1) * 3 +

n2 + (n + 1) * 5 = 113;

if p = 3, then V* = 12102, n = 5 and sO" = n * 1 + n2 + (n + 1) * 2 + n * 3 +

n2 + (n + 1) * 5 = 112;

if p = 4, then V* = 12012, n = 5 and sO" = n * 1 + n2 + (n + 1) * 2 + n * 4 +

n2 + (n + 1) * 5 = 117;

if p = 5, then V* = 12021, n = 5 and sO" = n * 1 + n2 + (n + 1) * 2 + n2 +

(n + 1) * 4 + n * 5 = 116.

So the minimum s-checksum is 112, when 1 is inserted to the left of the

leftmost 0, and the maximum s-checksum is 117, when 1 is inserted to the

right of the rightmost O. If there is no 0 in a word, p = 1 provides the largest

s-checksum and p = n + 1 provides the smallest s-checksum.

Lemma 4.2.4. S0"2,1 = min(s0"2)'

51

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

Proof. S0"2,p = sO" + n2 + (n + 1) * p + n * Rl + (n + 1) * R2.

Ifvp = 0, then S0"2,p+l = sO"+n2+(n+1)*(p+1)+n*R1+(n+1)*R2 > S0"2,p.

If vp = 1, then Rl is decreased by 1 and S0"2,p+l = sO" + n2 + (n + 1) * (p +

1) + n * (R1 - 1) + (n + 1) * R2 > S0"2,p.

If vp = 2, then R2 is decreased by 1 and S0"2,p+l = sO" + n2 + (n + 1) * (p +

1) + n * R1 + (n + 1) * (R2 - 1) = S0"2,p.

Therefore S0"2,p ~ S0"2,p+l.

Therefore S0"2,1 = min(s0"2).

Example 4.2.3. Let V = 1202 and 2 is insterted,

o

if p = 1, then V* = 21202, n = 5 and sO" = n2 + (n + 1) * 1 + n * 2 + n2 +

(n + 1) * 3 + n2 + (n + 1) * 5 = 139;

if p = 2, then V* = 12202, n = 5 and sO" = n * 1 + n2 + (n + 1) * 2 + n2 +

(n + 1) * 3 + n2 + (n + 1) * 5 = 140;

if p = 3, then V* = 12202, n = 5 and sO" = n * 1 + n2 + (n + 1) * 2 + n2 +

(n + 1) * 3 + n2 + (n + 1) * 5 = 140;

if p = 4, then V* = 12022, n = 5 and sO" = n * 1 + n2 + (n + 1) * 2 + n2 +

(n + 1) * 4 + n2 + (n + 1) * 5 = 146;

if p = 5, then V* = 12022, n = 5 and sO" = n * 1 + n2 + (n + 1) * 2 + n2 +

(n + 1) * 4 + n2 + (n + 1) * 5 = 146.

So the maximum s-checksum is 146, when p = 5.

Lemma 4.2.5. max(sO"o) < min(sO"l).

Proof. By Lemma 4.2.1, max(sO"o) = SO"O,l = sO" + n * k1 + (n + 1) * k2.

52

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

By Lemma 4.2.2,

sa + n * p + n * Rl + (n + 1) * R2

sa + n * (Lo + L1 + L2 + 1) + n * R1 + (n + 1) * R2

sa + n * (L1 + R1) + (n + 1) * (L2 + R2) - L2 + n * Lo + n

sa + n * k1 + n * k2 + L2 + n * Lo + n

So,

min(sa1) - max(sao)

(sa + n * k1 + n * k2 + n * Lo + L2 + n) - (sa + n * k1 + (n + 1) * k2)

n * Lo + L2 + n - k2

n * Lo + L2 + n - (L2 + R2)

n* Lo + n - R2

> 0 (since n = Lo + L1 + L2 + 1 + Ro + R1 + R2 > R2)

Therefore, max(sao) < min(sa1). D

Proof. By Lemma 4.2.4, min(sa2) = sa2,1 = sa + n2 + (n + 1) * p + n * k1 +

(n + 1) * k2•

By Lemma 4.2.3, max(sa1) = sa + n * p + n * R1 + (n + 1) * R2.

53

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

So,

min(sa2) - max(sa1)

(so' + n2 + (n + 1) * p + n * k1 + (n + 1) * k2)

-(so' + n * p + n * R1 + (n + 1) * R2)

- n2 + p + n * (k1 - R1) + (n + 1) * (k2 - R2)

n2 + p + n * L1 + (n + 1) * L2

> 0 (since p = Lo + L1 + L2 + 1 > 0)

Therefore, max(sa1) < min(sa2). o

Example 4.2.4. From examples 4.2.1, 4.2.2 and 4.2.3, we can see max(sao) =

108, min(sa1) = 112, max(sa1) = 117 and min(sa2) = 146.

So, max(sao) < min(sa1) < max(sa1) < min(sa2).

Lemma 4.2.7. There is no word that has two supersequences created by one

insertion, such that they have the same s-checksum.

Proof. Assume we construct a function f : p -+ So', then:

If 0 is inserted, f is monotonically decreasing (by Lemma 4.2.1). Therefore,

it is impossible to produce two different supersequence by inserting O.

If 2 is inserted, f is monotonically increasing (by Lemma 4.2.4). Therefore,

it is also impossible.

If 1 is inserted, f is not monotonic. However, increasing Ro by 1 contributes

n to the total s-checksum while increasing R2 by 1 contributes 1 (by Lemma

54

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

4.2.2). Therefore, if the two supersequences have the same s-checksum, then

one of them must have n 2's -and the other one has a single 0, which is

impossible, because in this case the length is n + 1, but not n.

Therefore, it is impossible to generate two supersequences with the same

s-checksum by one insertion. o

Now, it is time to prove these codes correct a single deletion.

Theorem 4.2.1. S codes are I-deletion correcting.

Proof. If 0 is deleted, the deficiency in s-checksum is !:1sa = n * R1 + (n +

1) * R2, which is no larger than weight sw = k1 * n + k2 * (n + 1). If 1 is

deleted, the deficiency is

!:1sa n * p + n * R1 + (n + 1) * R2

n * (Lo + L1 + L2 + 1) + n * R1 + (n + 1) * R2

n * (L1 + R1) + (n + 1) * (L2 + R2) - L2 + n * Lo + n

- n * k1 + (n + 1) * k2 - L2 + n * Lo + n

sw - L2 + n * Lo + n

This value !:1sa can be larger than n2 and smaller than sw.

If 2 is deleted, the deficiency is !:1sa = n2 + (n+ 1) * p+ n* R1 + (n + 1) * R2,

which is no smaller than n2•

Therefore, if w < !:1sa < n2, the deletion must be l.

If !:1sa :S wand max(sao) < sa' + !:1sa, then the deletion is 1, by Lemma

55

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

4.2.5.

If max(sao) 2: sa' + .6.sa, then 0 is deleted.

If .6.sa 2: n2 and max(sal) < sa' + .6.sa, the 2 is deleted, by Lemma 4.2.6.

If max(sal) 2: sa' + .6.sa, then 1 is deleted.

To correct the error, we also need to decide the position of the deletion.

If 0 is deleted, the position can be decided by Rl and R2 .

.6. sa n * Rl + (n + 1) * R2

- R2 (mod n)

So, Rl = l.6.sa/nJ - R2.

If 1 is deleted, the position can be decided by Ro and R2 .

.6. sa n*p+n*R1 +(n+1)*R2

n * (p + Rl + R2) + R2

So, p + Rl + R2 = l.6.sa /nJ,

Ro = n - (p + Rl + R2) = n - l.6.sa/nJ and

R2 = .6.sa - l.6.sa /n J * n.

56

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

If 2 is deleted, the position can be decided by Ro and RI.

D..S(J n2 + (n + 1) * p + n * RI + (n + 1) * R2

D..s(J - n2 - (n + 1) * p + n * Rl + (n + 1) * R2

D..s(J - n2 (n + 1) * (p + Rl + R2) - Rl

So, Rl = r(D..s(J - n2)j(n + 1)1 * (n + 1) - (D..s(J - n2),

p + RI + R2 = r(D..s(J - n2)j(n + 1)1 and

Ro = n - (p + Rl + R2) = n - r(D..s(J - n2)j(n + 1)1-

Therefore, S codes can correct 1 deletion.

The uniqueness of the correction is ensured by Lemma 4.2.7.

Therefore, S codes are I-deletion correcting.

4.3 Decoding of S Codes

From the proof, we can conclude the decoding algorithm as follows:

1. Calculate the s-checksum s(J' by using Definition 4.1.1.

2. Calculate the s-weight sw by using definition 4.1.2.

o

3. Calculate the original s-checksum S(J = r s(J' j (2 * n 2 + a * n) 1 * (2 * n 2 +

a * n), by using Definition 4.1.3 and the deficiency D..s(J = S(J - s(J'.

4. If D..s(J ~ wand max(s(Jo) < s(J' + D..s(J, then the deletion is 0, by

Lemma 4.2.5.

57

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

If D.sa 2:: n2 and max(sal) < a' + D.sa, then the deletion is 2, by

Lemma 4.2.6.

Otherwise, the deletion is 1.

5. If the deletion is 0, get Rl and R2 by proof 4.2. And insert 0 to the

left of the rightmost Rl l's and rightmost R2 2's.

If the deletion is 1, get Ro and R2 by proof 4.2. And insert 1 to the

left of the rightmost Ro O's and rightmost R2 2's.

If the deletion is 2, get Ro and Rl by proof 4.2. And insert 0 to the

left of the rightmost Ro O's and rightmost Rl 1 'so

Let us demonstrate this code by an example.

Example 4.3.1. Let q = 3, n = 4 and a = 3. 0102 is a codeword, since

sa 0 * 1 + 4 * 2 + 0 * 3 + 42 + (4 + 1) * 4

44

o (mod 2 * 42 + 3 * 4)

Suppose 012 is received after transmission. The s-checksum is sa' = 4 * 2 +

42 + (4 + 1) * 3 = 39. The s-weight is sw = 4 + 5 = 9. And the original

s-checksum is sa = ,39/441 * 44 = 44. The deficiency is D.sa = 44 - 39 = 5,

which is smaller than sw. So, we know the deletion is not 2. And we compute

max(sao), which is the s-checksum of 0012 by inserting 0 at the first position.

Then max(sao) = 4*3+42 + (4+ 1) *4 = 48, which is larger than the original

58

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

s-checksum. Therefore, we know that 0 was deleted. Then by following the

last step of the algorithm, R2 = flsamodn = 1 and Rl = lflsa/nJ -R2 = o.
The insertion is to the left of the rightmost 0 1 's and 1 2's. Therefore, we

decode to 0102.

After we construct the codes and prove the codes work, the size of S codes is

studied. Unlike other codes, we do not have an efficient encoding algorithm.

The codewords have to be generated by exhaustive search, which is scanning

all possible words in the vector space to see which ones follow the definition.

Table 4.3 shows the size of some of the S codes and the size of the codes

constructed by a greedy algorithm (see Section 2.5). As we can see, S

codes have size far smaller than the size of codes constructed by the greedy

algorithm. This small size is caused by the definition of S codes. In Definition

4.1.3, the modulus we defined is n2 + a * n, which means the entire vector

space is divided into n2 + a * n subsets. The size of the whole vector space

is qn. As a result, we can never expect the size of the S codes to exceed

the size of the T codes or the codes constructed by the greedy algorithm.

Although S codes have a better decoding algorithm than greedy codes, we

must conclude that the construction of the S codes is a failure from the point

of view of trying to construct codes of large size. Table 4.3 shows the size

of the S codes with length from 4 to 14. The parameter a is the coefficient

of the formula in Definition 4.1.3. The column "Greedy" shows the size of

the codes constructed by the greedy algorithm.

59

CHAPTER 4. A SIMPLE CONSTRUCTION FOR TERNARY CODES

Length a=2 a=3 Greedy
4 3 3 11
5 5 5 20
6 12 10 50
7 25 27 116
8 57 53 298
9 133 138 769

10 308 297 2010
11 733 731 5303
12 1832 1752 14120
13 4607 4487 38008
14 11833 11453 102704

Table 4.1: The Size of S Codes

60

Chapter 5

The Extension of T Codes

After the failure of S codes, the research turns in another direction. This

approach is based on the construction of the T codes. Tenegolts discovered

these nearly optimal codes in [10]. However the codes are neither optimal

nor perfect, which is shown in Chapter 2. In this chapter, we will introduce

some further properties of the T codes, which are found during the research,

and present several ways to extend the size of the T codes by using these

properties. As before, we are concentrating on ternary codes.

5.1 Properties and Hypothesis

Before considering the properties we would like to define equivalent, symbol

permutation and reverse first. Similar definitions of equivalent can be found

in [3].

CHAPTER 5. THE EXTENSION OF T CODES

Definition 5.1.1. A q-ary word w = WI, W2, ... , Wn of length n is created by

a symbol permutation of another q-ary word w' = w~, w~, ... , w~, if w can be

transformed into w' by a function g(w') = (f(W1) , !(W2), ... , !(wn)), where!

is a bijection! : Q H Q and Q is the alphabet of w and w'.

Definition 5.1.2. A word w = WI, W2, ... , Wn is the reverse of w', if w' =

Example 5.1.1. Suppose we have two codes 0 1 = {000,101} and O2 =

{DID, Ill}. The word 101 is the reverse of itself. It is a symbol permutation

of 010, by changing the l's and D's. Because the word is binary, only 1 symbol

permutation is possible other than the identity permutation. If it is q-ary,

then it has q! - 1 symbol permutations other than the identity permutation.

Definition 5.1.3. Two codes 0 1 and O2 are equivalent if and only if each

sphere in 0 1 can be mapped to one and only one sphere in O2 . And two

spheres 81 and 82 are mapped, if and only if the codeword of 81 is mapped

to the codeword of 82 and each word in the sphere 81 can be mapped to one

and only one word in the sphere 82. The mapping of two words can only be

symbol permutation or reverse.

Example 5.1.2. Suppose there are two codes 0 1 = {DOl, lID} and O2 =

{200, 122}. In 0 1 , 001 corrects {OD,D 1 }(so in the sphere of 001, there are

three words 001,00,01,) and 110 corrects {10, 11} while in O2 , 122 corrects

{12,22} and 200 corrects {20, DO}. We can establish a mapping:

62

CHAPTER 5. THE EXTENSION OF T CODES

Sphere of 001 +-+ Sphere of 122 Sphere of 110 +-+ Sphere of 200

00

01

11

12

As a result C1 is equivalent to C2 .

11

10

With the above definitions, the following theorems are proved.

00

20

Theorem 5.1.1. The symbol permutation of VTo(n) is itself if n is even or

VT!!.±l (n) if n is odd.
2

Proof. Let w be a codeword in VTo(n) with t l's at position Pi, where 1 ::;;

i ::;; t ::;; n and w' be a codeword in the symbol permutation. The checksum

for w is (J and for w' is (J'.

By the definition of symbol permutation, in w all the 1 's are replaced by O's

and 0 's are replaced by 1 'so SO w' has n - t 1 'so And (J + (J' = I::~=l i.

By the definition of VT codes, (J = I::;=lPi = 1 * (n + 1) _ 0 (mod n + 1),

where 1 is a non-negative integer. Therefore, if n is even, then

n

(J' = ~ i - (J = ~(n + 1) - l(n + 1) = (~ -l)(n + 1)
t=t

where n/2 and 1 are two integers. So (J' = 0 (mod n + 1).

If n is odd then

I I:n . n-1 n+1 n-1 n+1
(J = '/,-(J = --(n+1)-l(n+1)+-- = (---l)(n+1)+--

i=l 2 2 2 2

63

CHAPTER 5. THE EXTENSION OF T CODES

where (n - 1)/2 and 1 are two integers. So a' - nt1 (mod n + 1).

Therefore, the symbol permutation of VTo(n) is itself if n is even or VTn+1 (n)
2

if n is odd. o

Theorem 5.1.2. The symbol permutation ofVTo(n) is equivalent to VTo(n).

Proof. If n is even, then the symbol permutation of VTo(n) is itself. And it

is equivalent to itself.

If n is odd, each word w in VTo (n) has a symbol permuted word w' in

VTn+l (n). The words wand w' have the same number of runs and same
2

length for each pair of runs r from wand r' from w'. SO the sphere of w is

equivalent to the sphere of w'. Therefore the two codes are equivalent.

As a result, the symbol permutation of VTo(n) is equivalent to VTo(n). 0

Then, we must ensure that some improvement can be applied to the T codes.

So the optimality of the codes is studied.

Theorem 5.1.3. Not all of the T codes are optimal.

Theorem 5.1.4. Not all of the T codes are perfect.

These two theorems can be easily proved by counter examples. Table 5.1

gives the list of all the codewords in To,o(5), all the uncovered errors and

extended words discovered by the greedy algorithm.

The code To,o(5) has 17 codewords. And 24 errors of length 4 cannot be cor­

rected by the code, so it is not perfect. The two words {1100l, 12200} can be

64

CHAPTER 5. THE EXTENSION OF T CODES

Codewords Errors Extra words
00000 11112 0021 1012 2111 11001
00012 12102 0101 1100 2122 12200
00111 12222 0102 1101 2200
00222 20010 0120 1121 2202
01122 20121 0201 1200 2212
02100 20220 0202 1201 2221
10020 20220 0211 1211
10110 22101 0212 1220
10221 1001 2002

Table 5.1: The codewords of To,o(5), the uncovered errors and extra words
that can be added into the code.

added into the code to extend the size, where 11001 corrects {1100, 1101, 1001}

while 12200 corrects {1220, 1200, 2200}. Alternatively, the word 12200 could

be replaced by 22002, which corrects {2200, 2202, 2002}. So, the code To,o(5)U

{11001, 12200} has larger size than To,o(5). This means To,o(5) is not opti­

mal. Actually, most of the codes generated during the experiment are neither

optimal nor perfect.

After this, the sizes of different T codes with the same length is studied. The­

orem 2.2.2 shows that different VT codes of the same length have different

sizes. This property can be applied to the T codes.

Theorem 5.1.5. Not all ternary T codes with the same length have the same

size except that length is a power of 3.

Proof. Theorem 2.3.3 shows the T codes actually divide the vector space

into q * n subsets. And for ternary we have q = 3. And if n is not a power

of 3, then 3n 1= 0 (mod n). So 3n 1= 0 (mod 3 * n), and the sizes of the 3 * n

65

CHAPTER 5. THE EXTENSION OF T CODES

subsets are not the same. D

This theorem can also be applied to an arbitrary alphabet, such that q =I

o (modn).

Now it comes to another question: how can we generate a ternary T code

with largest size? To study this issue, we first construct the ternary T codes

of length from 4 to 10 and all combinations of f3 and 'Y. The sizes of the

codes are shown in Tables 5.2 - 5.9.

From Tables 5.3, 5.4, 5.6, 5.7 and 5.9, we see that the value of f3 does

'Y\f3 0 1 2
0 5 3 3
1 2 3 3
2 2 3 3

Table 5.2: n = 3, f3 affects the size of codes.

'Y\f3 0 1 2
0 7 7 7
1 6 6 6
2 8 8 8
3 6 6 6

Table 5.3: n = 4

'Y\f3 0 1 2
0 17 17 17
1 16 16 16
2 16 16 16
3 16 16 16
4 16 16 16

Table 5.4: n = 5

66

CHAPTER 5. THE EXTENSION OF T CODES

'Y\f3 0 1 2
0 41 39 39
1 40 42 42
2 38 39 39
3 46 42 42
4 38 39 39
5 40 42 42

Table 5.5: n = 6, f3 affects the size of codes.

'Y\f3 0 1 2
0 105 105 105
1 104 104 104
2 104 104 104
3 104 104 104
4 104 104 104
5 104 104 104
6 104 104 104

Table 5.6: n = 7

not affect the size of the codes, although this is not the case in Tables 5.5

or 5.8. We conjecture that

Hypothesis 5.1.1. The value of f3 does not affect the size of the T codes, if

f3 ¢ 0 (mod 3).

The reason that f3 cannot be a multiple of 3 is that, by the association rule in

the definition of the T codes, it is looking at decreasing and non-decreasing

sequences, and for a ternary word, the longest decreasing sequence is 210

which has length 3. If this hypothesis is true, then it can be applied to

non-ternary codes as follows.

Hypothesis 5.1.2. The value of f3 does not affect the size of the q-ary T

67

CHAPTER 5. THE EXTENSION OF T CODES

'Y\f3 0 1 2
0 277 277 277
1 207 270 270
2 276 276 276
3 270 270 270
4 278 278 278
5 270 270 270
6 276 276 276
7 270 270 270

Table 5.7: n = 8

'Y\f3 0 1 2
0 737 729 729
1 726 729 729
2 726 729 729
3 734 729 729
4 726 729 729
5 726 729 729
6 734 729 729
7 726 729 729
8 726 729 729

Table 5.8: n = 9, f3 affects the size of codes.

'Y\f3 0 1 2
0 1961 1961 1961
1 1976 1976 1976
2 1960 1960 1960
3 1976 1976 1976
4 1960 1960 1960
5 1978 1978 1978
6 1960 1960 1960
7 1976 1976 1976
8 1960 1960 1960
9 1976 1976 1976

Table 5.9: n = 10

68

CHAPTER 5. THE EXTENSION OF T CODES

codes, if j3 =1= 0 (mod q).

For the studied cases, code size is the largest when j3 = 0 and '"Y = 2 if n = 4

(Table 5.3); j3 = 0 and '"Y = 0 if n = 5 (Table 5.4); j3 = 0 and '"Y = 3 if n = 6

(Table 5.5); j3 = 0 and '"Y = 0 if n = 7 (Table 5.6); j3 = 0 and '"Y = 4 if n = 8

(Table 5.7); j3 = 0 and '"Y = 0 if n = 9 (Table 5.8); and j3 = 0 and'"Y = 5 if

n = 10 (Table 5.9). We now have an hypothesis about the largest ternary

T codes.

Hypothesis 5.1.3. The size of a ternary T code is largest if j3 = 0 and

{

0, ifn is odd
'"Y=

n/2, if n is even

This hypothesis is closely related to the property of VT codes. Theorem

2.2.2 shows that VTo(n) has the largest size. This means if n is even then

the all I-word is in the code, and if n is odd then the all 1 word is in the

symbol permutation code which is equivalent to VTo(n), by Theorem 5.1.2.

The association rule of the T codes translates a non-binary word into a word

of a VT code. So if the associated VT code is maximal, the T code probably

is. As a result, if a codeword of a T code is associated with the all I-word in

a VT code, then that code has maximal size. In other words, '"Y has to be 0

if n is odd and n/2 if n is even.

This hypothesis helps us to specify a special class of T codes.

69

CHAPTER 5. THE EXTENSION OF T CODES

Definition 5.1.4. Ts(n) is a ternary T code, such that j3 = 0 and

{

0,
"(=

n/2, if n is even

if n is odd

If the size of this kind of special T codes can be extended, then some larger

codes can be constructed.

The tables also show that the values in Tables 5.4 and 5.6 are very regular.

This relates to Fermat's little theorem.

Theorem 5.1.6. (Fermat's little theorem) For any integer a and prime num­

ber p, aP = a (modp).

So, for length 5, the entire vector space has size 35 and it is divided into

3 * 5 subsets. By the theorem, 35 _ 3 (mod 5). And by Hypothesis 5.1.1,

j3 does not affect the size of the codes, that is, all the codes with the same

"(will have the same size, so all the codes should have the same size of

(35 - 3)/(3 * 5) = 16 except for three codes(all 0 word, all 1 word and all 2

word) of size 17, which have "(= 0, by Hypothesis 5.1.2.

Here we partly prove Hypothesis 5.1.3.

Theorem 5.1. 7. If j3 does not affect the size of T codes and n is a prime

number with exception 3, then

70

CHAPTER 5. THE EXTENSION OF T CODES

I T,B,'Y(n) I = 3n-~-1 + 1, where

{

0, ifnisodd
"1=

n/2, if n is even

and

IT,B''Y(n) I = 3n-~-1, where

{

0, ifn is odd
"1=1-

n/2, if n is even

This theorem assumes a part of the hypothesis, which is j3 does not affect the

size, is correct and discusses the case, such that n is a prime number other

than 3. The exception happens, since after we remove the all 0, alII and all

2 words, there are 33 - 3 = 24 words left and 24 ¢= ° mod q * n. If we can

find a bijection between different T codes with the same length, then we can

prove the theorem. So, the theorem can be rewritten as follows.

Theorem 5.1.8. If W = WIW2 ... Wn (w is not one of all 0, all 1 and all 2

words) is a codeword ofT,B,'Y(n) (n is a prime except 3), then the cyclic word

of w: w' = Wi ... WnWl ... Wi-l (1 < i :::; n) is a codeword of T,BI''Y,(n), j3 = j3'

and "I =I- "I'.

If i = 1, then w' = WIW2 ... Wn, which is the same as w. So the range of i

ensures that wand w' are different.

71

CHAPTER 5. THE EXTENSION OF T CODES

Proof. By definition 2.3.1,

n i-I

/3' - 2:: Wt + 2:: Wt mod q
t=i t=1
n

2:: Wt mod q .
t=1

/3

Let the associated binary string of W be a = aIa2 ... an with checksum a, and

the associated binary string of w' be a' = ai ... anal ... ai-1 with checksum a'.

Since all the symbols of ai ... an are moved n - i + 1 positions to the left and

all the symbols of al ... ai-1 are moved i-I positions to the right from a,

i-I n

a' - a (n - i + 1) 2:: at - (i - 1) 2:: at

t=1 t=i
i-I i-I n

n 2:: at - (i - 1) 2:: at - (i - 1) 2:: at

t=1 t=1 t=i

i-I n

n 2:: at - (i - 1) 2:: at

t=1 t=1

Since the all 0, all 1 and all 2 words are excluded, not all symbols in a are

l's.

:. 2:~=1 at < n

:. 2:~=1 at oj: modn

.: n is a prime, 1 < i :::; n.

Also, i-I oj: 0 mod n :. (i - 1) 2:~=1 at oj: 0 mod n

72

CHAPTER 5. THE EXTENSION OF T CODES

... ry = a mod n, ry' - a' mod n

... ry =1= ry'.

Also we need to prove the reduction of the two theorems is correct.

Theorem 5.1.9. Theorem 5.1.8 implies Theorem 5.1.7.

o

Proof. By Fermat's little theorem, (3n - 3) = 0 mod n when n is a prime.

And (3n - 3) _ 0 mod 3, so (3n - 3) _ 0 mod 3 * n. This implies there is an

even partition of the vector space after we remove the all 0, all 1 and all 2

words. Also by Theorem 5.1.8, a word w has n - 1 cyclic words. No two

of these n words(w and its cyclic words) are in the same T code. So these

n words are separated evenly by different values of ry. Therefore if the three

words are excluded, and if j3 does not affect the size, then all of the codes

have the same size.

For the cases of the all 0, all 1 and all 2 words, n is a prime and larger than

3. Then ry = 0 which is the same, j3 = 0 for the all 0 word, j3 _ n mod 3 for

the all 1 word and j3 - 2n mod 3 for the all 2 word, which are different. So

each of the three word belongs to different T(3,o (n) codes.

After a summary, we have Theorem 5.1.7. o

Returning to the Ts(n) codes again, we construct all the codes from length 4

to length 18 and consider all the error vectors that cannot be corrected. One

very interesting property is found. The uncovered errors of Ts (4), Ts (5) and

Ts(6) are listed in Table 5.10.

From the table we can find that 021 cannot be corrected by Ts(4) , 0021 cannot

73

CHAPTER 5. THE EXTENSION OF T CODES

Ts(4) Ts(5) Ts(6)
021 0021 1200 00021 02012 11120 21000
101 0101 1201 00102 02111 11201 21001
110 0102 1211 00120 02122 11210 21002
202 0120 1220 00201 02200 12000 21011
220 0201 2002 00210 02210 12011 21012

0202 2111 01002 02212 12022 21022
0211 2122 01100 02220 12202 21112
0212 2200 01110 10001 12210 22002
1001 2202 01202 10012 12211 22112
1012 2212 01210 10222 12221 22201
1100 2221 01211 11001 20002 22210
1101 01221 11012 20111
1121 02001 11102 20122

Table 5.10: The uncovered errors of Ts(4), Ts(5) and Ts(6).

be corrected by Ts(5) and 00021 cannot be corrected by Ts(6). Indeed, as

the length grows longer, the run of O's in the error increases simultaneously.

Similarly 101, 1001 and 10001 also cannot be corrected. With this discovery,

an extendable error is defined as

Definition 5.1.5. If a word w = WIW2 ... Wn-l is an extendable error of Ts(n)
i

at position p, then the word W = WIW2 ... Wp-l ~WpWp+l ... Wn-l is an error

vector that cannot be corrected by Ts(n + i).

If non-zero symbols are inserted, the weight of the words and value of (3 are

changed. Then the word will no longer be a codeword of Ts (n). This is the

reason that the symbol 0 is the only possible extension.

To discuss the extendable errors, we have to define palindromes.

74

CHAPTER 5. THE EXTENSION OF T CODES

Definition 5.1.6. A palindrome is a word WIW2W3 ... Wn-lWn, such that Wi =

Wn-Hl for every 1 :::; i :::; n.

In other words, a palindrome is a word in which the suffix of any given length

i is the inverse of the prefix of the same length. For example, 1001001 and

010010 are two palindromes.

After an examination of all uncovered errors of Ts(6), 7 types of extendable

errors are discovered (see Table 5.11). In the table, "Word" means the words

are codewords of VT codes. "Decode" means the decoding process of the VT

codes. "Binary" means the associated binary string. "Asso." means the as­

sociation rule by the definition of T codes. "Error" means the error vectors

which cannot be corrected by Ts(n) codes. The error vectors are just some

examples. Usually more than one error that can be associated with the same

binary word.

From the table we can see that after the decoding process of VT codes, the

first and the third cases are already palindromes without any extension; the

second case is also a palindrome with no extension, but after one extension it

becomes a different palindrome and it returns to the previous type of palin­

drome again after two extensions; the fourth and the seventh are always

non-palindromes; the fifth is a non-palindrome at the beginning, but turns

to a palindrome after one extension and the sixth is a palindrome originally,

but becomes a non-palindrome later. Even with these many cases, one thing

is unchanged. After several extensions, the binary codeword is always ex­

tended by a single one at the middle run. As a result, we have the following

75

CHAPTER 5. THE EXTENSION OF T CODES

n=6 extension n=7 extension n=8
l. Word 101110 --+ 1011110 --+ 10111110

Decode t t t
Binary 11110 --+ 111110 --+ 1111110

Asso. t t t
Error 01221 --+ 001221 --+ 0001221

2. Word 110101 --+ 1110011 --+ 11101011
Decode t t t
Binary 11011 --+ 111011 --+ 1111011

Asso. t t t
Error 02001 --+ 002001 --+ 0002001

3. Word 110101 --+ 1101101 --+ 11011101
Decode t t t
Binary 11011 --+ 110111 --+ 1101111

Asso. t t t
Error 02012 --+ 020012 --+ 0200012

4. Word 111000 --+ 1110100 --+ 11101100
Decode t t t
Binary 11100 --+ 111010 --+ 1110110

Asso. t t t
Error 02210 --+ 022010 --+ 0220010

5. Word 111000 --+ 1001100 --+ 10011100
Decode t t t
Binary 11100 --+ 101100 --+ 1011100

Asso. t t t
Error 11210 --+ 101210 --+ 1001210

6. Word 110101 --+ 1001011 --+ 10011011
Decode t t t
Binary 11011 --+ 101011 --+ 1011011

Asso. t t t
Error 12011 --+ 102011 --+ 1002011

7. Word 100011 --+ 1001011 --+ 10011011
Decode t t t
Binary 10011 --+ 101011 --+ 1011011

Asso. t t t
Error 21000 --+ 201000 --+ 2001000

Table 5.11: 7 examples of extendable errors.

76

CHAPTER 5. THE EXTENSION OF T CODES

Uncovered Error Extendable Errors
Ts(4) 5 3
Ts(5) 24 14
Ts(6) 51 37
Ts(7) 215 172
Ts(8) 620 514
Ts(9) 1915 1651
Ts(10) 5845 5098
Ts(11) 17910 15958
Ts(12) 53833 48228
Ts(13) 163548 148791
Ts(14) 492932 448938
Ts(15) 1487723 1370498
Ts(16) 4482358 4128126
Ts(17) 13504926 12548478
Ts(18) 40649351 37748386

Table 5.12: The Number of Uncovered Errors and Extendable Errors.

hypothesis.

Hypothesis 5.1.4. If w is an extendable error of length n (n --+ (0), t is

the VT code of the associated string of w, w' is the error by one extension

from wand t' is the VT code of the associated string of w', then w' is a

supersequence of w created by inserting 1 between the r n/21 th bit and the

rn/21 + 1th bit.

With this hypothesis, our program exhaustively searched all the uncovered

errors from Ts(4) to Ts(18). The results are listed in Table 5.12. The ta-

ble shows that the numbers of uncovered errors and extendable errors are

increasing exponentially at the same time. And if we can construct a code-

77

CHAPTER 5. THE EXTENSION OF T CODES

word from these extendable errors then the codeword can also be extended.

So, a larger code can be constructed by adding this codeword to Ts(n).

5.2 One Extendable Codeword

This section will demonstrate the first extendable codeword: 2222202211,

which can be added into TAn), for n ~ 10. This is the only extendable code­

word which is discovered so far. The process of looking for such extendable

codewords includes: 1) search all the extendable errors; 2) search among the

extendable errors of length n to see if there is a word of length n + 1 such

that all of its subsequences by I-deletion are extendable errors; 3) check if

the extension positions are in the same run. We will also discuss why it can

be extended and how to extend.

Theorem 5.2.1. The word 2222202211 is an extendable codeword for TAn),

where n ~ 10 and the extension position is between the first and second runs.

As a result, 2222202211 can be added to Ts(10), 22222002211 can be added

to Ts(11), 222220002211 can be added to Ts(12) and so on.

In order to prove this theorem, we need to prove that all substrings (namely

222202211, 222222211, 222220211 and 222220221) of the word are extendable

errors which are uncovered by Ts(n) and that the extension positions are the

same.

Lemma 5.2.1. 222202211 cannot be corrected by Ts(10).

78

CHAPTER 5. THE EXTENSION OF T CODES

Proof. W9 = 222202211 will be transformed into Ws9 = 111101101 by the

association rule (2.3.1).

Ws9 = 111101101 will be decoded into W v9 = 1111011010 by the decoding

algorithm of VT codes. The insertion is a 0 at the end of the word.

By the decoding algorithm of T codes, 1 will be added into the last run of

the ternary word. Since the last run is a run of l's, 2222022111 will be the

only possibility.

However, the associated binary string is 1111011011, which is not the same

as W v9 = 1111011010.

Therefore, 222202211 cannot be corrected by Ts(10). o

Lemma 5.2.2. Let Wn = 2222Qy.Q,2211 be the extendable error after m
m

extensions and let the length of W be n. Then W cannot be corrected by

Proof. Wn will be associated with Wsn = 1111~1101 by the association
m

rule.

Let the checksum of Ws be TUn, so TU9 = 25 by Definition 2.3.1. Every

extension inserts a single 1 between the (n - 4)th bit and the (n - 3)th bit.

Thus each bit inserted contributes n - 4 to the checksum. Since the suffix

has three l's, the checksum is increased by n - 4 + 3 from length n to length

n+1.

79

CHAPTER 5. THE EXTENSION OF T CODES

As a result,

Tan Tan-l + n - 2
n-2

Tag + I>
i=8

T (n + 6)(n - 9)
ag + 2

n2 - 3n - 54
- 25+ 2

n2 - 3n - 4

2
(n + l)(n - 4)

2

By the definition of Ts codes, "(= 0 if the length of the codeword is odd and

"(= (n+ 1)/2 otherwise. The length of the error vector is n, so the length of

the codeword is n + 1.

80

CHAPTER 5. THE EXTENSION OF T CODES

If n + 1 is even, then

Tan mod (n + 1)

n+1 n+1
(Tan - -2- + -2-) mod (n + 1)

((n+1)(n-4) n+1 n+1) d(1) - ---+-- mo n+
2 2 2

((n+1)(n-5) n+1) d(1)
- 2 +-2- mo n+

(n + l)(n - 5) n + 1
(2 mod (n + 1) + -2 - mod (n + 1)) mod (n + 1)

n+1
- (0 + -2-) mod (n + 1)

n+1
-2- mod (n + 1)

'Y

If n + 1 is odd, then

Tan mod (n + 1) (n+1)(n-4) d(1)
2 mo n+

o mod (n + 1)

Therefore, Tan mod (n + 1) - 'Y Tag mod (9 + 1) - O.

So, after the decoding algorithm of VT codes, Wsn will be decoded into Wvn =

1111 ~,J)lOlO. The insertion is the same as Wvg, which means if Wg cannot
m

be decoded by Ts (10), then Wn cannot be decoded by Ts (n).

Therefore, Wn cannot be decoded by Ts(n). o

81

CHAPTER 5. THE EXTENSION OF T CODES

To summarize, we have

Lemma 5.2.3. 222202211 is an extendable error, and the extension position

is between the 4th bit and the 5th bit.

With similar proofs, we have the following lemmas.

Lemma 5.2.4. 222222211 is an extendable error, and the extension position

is between the 5th bit and the 6th bit.

Lemma 5.2.5. 222220211 is an extendable error, and the extension position

is between the 5th bit and the 6th bit.

Lemma 5.2.6. 222220221 is an extendable error, and the extension position

is between the 5th bit and the 6th bit.

Since all the substrings are extendable and the extension positions are in the

same run, Theorem 5.2.1 is proved.

82

Chapter 6

Results and Implementations

In this chapter, we will illustrate some results produced by our programs and

the implementations of our research.

6.1 Results

Table 6.1 shows the size of ternary I-deletion correcting codes, including the

codes constructed by the greedy algorithm in 2nd row, the number of errors

which cannot be covered by greedy in 3rd row, the Ts codes and uncovered

errors in 4th and 5th row, the number of words extended by the greedy

algorithm and the backtracking algorithm based on Ts codes in 6th and 8th

row. The seventh row is the number of errors which are not covered by the

codes after extension by the greedy algorithm. The last row is the number of

errors which are not covered by the codes after extension by the backtracking

CHAPTER 6. RESULTS AND IMPLEMENTATIONS

Length 5 6 7 8 9 10 11 12 13
Greedy 20 50 116 298 769 2010 5303 14120 38008

Un. Gre. 13 51 181 568 1853 6070 19526 62598 197808
Ts 17 46 105 278 737 1978 5369 14800 40881

. Un. Ts 24 50 215 620 1914 5845 17910 53832 163548
E. Gre. 2 0 4 5 14 17 28 38 68

SU 18 50 203 596 737 5756 17765 53636 163164
E.BT 2 0 4 5 14 17 28 41 68

SU 18 50 203 596 737 5756 17765 53621 163164

Table 6.1: The Comparison of Different Codes

algorithm. As we can see, the size of Ts codes is larger than the size of the

codes constructed by the greedy algorithm after the length is longer than 11.

The size of Ts codes is also growing exponentially. This ensures that the size

of T codes is getting close to optimal as the length increases (see Theorems

2.3.2 and 2.3.3). This table also shows the two ways of extension, greedy

and backtracking, based on Ts codes do not have any difference except when

the length is 12. The reason is that the Ts codes have covered most of the

errors already and there is no space for a large extension. As a result, if we

need to extend the T codes, the backtracking algorithm provides the optimal

extension, but with a time cost that is extremely large, while the greedy

algorithm provides almost the same extensions with very little time cost.

Tables 6.2- 6.7 show the size of the backtracking extension based on different

T codes. The extensions in Table 6.7 are still unknown when f3 = o. Our

program has run more than one month but with no result. The equations

in the tables mean that the size of T codes plus the size of the backtracking

extension. After the extension, the extended Ts codes are usually the largest,

84

CHAPTER 6. RESULTS AND IMPLEMENTATIONS

1\/3 0 1 2
0 17+2=19 17+2=19 17+2=19
1 16+1=17 16+1=17 16+1=17
2 16+3=19 16+2=18 16+2=18
3 16+2=18 16+3=19 16+2=18
4 16+1=17 16+1=17 16+1=17

Table 6.2: The Optimal Extensions of T(5)

1\/3 0 1 2
0 41+3=44 39+5=44 39+5=44
1 40+3=43 42+1=43 42+1=43
2 38+6=44 39+5=43 39+5=44
3 46+0=46 42+1=43 42+1=43
4 38+6=44 39+5=44 39+5=44
5 40+3=43 42+1=43 42+1=43

Table 6.3: The Optimal Extensions of T(6)

but not always. When the length is 8, the extended To,o and TO,l codes have

larger size than the extended Ts code, even though the To,o and TO,l codes

are smaller than the Ts code.

1\/3 0 1 2
0 105+4=109 105+4=109 105+4=109
1 104+2=106 104+2=106 104+2=106
2 104+9=113 104+5=109 104+5=109
3 104+4=108 104+4=108 104+4=108
4 104+4=108 104+4=108 104+4=108
5 104+5=109 104+5=109 104+9=113
6 104+2=106 104+2=106 104+2=106

Table 6.4: The Optimal Extensions of T(7)

85

CHAPTER 6. RESULTS AND IMPLEMENTATIONS

'Y\/3 0 1 2
0 277+8=285 277+8=285 277+6=283
1 270+11=281 270+9=279 270+9=279
2 276+2=278 276+3=279 276+4=280
3 279+6=279 270+13=283 270+10=280
4 278+5=283 278+5=283 278+2=280
5 270+13=283 270+9=279 270+10=280
6 276+3=279 276+2=278 276+4=280
7 270+9=279 270+11=281 270+9=279

Table 6.5: The Optimal Extensions of T(8)

'Y\/3 0 1 2
0 737+14=751 729+17=746 729+17=746
1 726+10=736 729+14=743 729+12=741
2 726+16=742 729+10=739 729+9=738
3 734+21=755 729+9=738 729+6=735
4 726+8=734 729+12=741 729+12=741
5 726+8=734 729+12=741 729+12=741
6 734+21=755 729+6=735 729+9=738
7 726+16=742 729+9=738 729+10=739
8 726+10=736 729+12=741 729+14=743

Table 6.6: The Optimal Extensions of T(9)

6.2 Implementation

All the programs are developed in C programming language based on MinGW

and WindowsXP. The main achievements of our programs are as follows.

1. The greedy algorithm for constructing and extending codes;

2. The backtracking algorithm for constructing and extending codes;

3. A program for S codes, which contains the exhaustive encoding algo-

86

CHAPTER 6. RESULTS AND IMPLEMENTATIONS

"/\/3 0 1 2
0 Unknown Unknown Unknown
1 1976+ 12=1988 1976+11=1987 1976+17=1993
2 1960+ 19=1979 1960+26=1986 1960+22=1982
3 1976+ 19=1995 1976+13=1989 1976+14=1990
4 1960+ 25= 1985 1960+20=1980 1960+22=1982
5 1978+17=1995 1978+14=1992 1978+17=1995
6 1960+22=1982 1960+20=1980 1960+25= 1985
7 1976+14=1990 1976+13=1989 1976+19=1995
8 1960+22=1982 1960+26=1986 1960+ 19= 1979
9 1976+ 17=1993 1976+11=1987 1976+12=1988

Table 6.7: The Optimal Extensions of T(lO)

rithm, the decoding algorithm, one recorder for the size of the codes,

one detector for finding the uncovered errors, and one extension of the

S codes by using the greedy algorithm;

4. One program for T codes, which includes the encoding and decoding al­

gorithm of VT codes (since by Definition 2.3.1, the decoding algorithm

of T codes is based on the decoding algorithm of VT codes), the encod­

ing and decoding algorithm of T codes, one function to generate the

size of T codes with all possible values of /3 and ,,/, one detector for the

uncovered errors, and one generator for generating all permutations;

5. A program for extendable errors, which searches all the uncovered er­

rors (from the program of T codes) and checks all the possible extension

positions in order to discover the extendable errors.

87

CHAPTER 6. RESULTS AND IMPLEMENTATIONS

The time complexity of the backtracking program is O(2QI). It did not finish

in more than 1 month of computing time when 1 = 5 and q = 3. So, we

cannot construct a perfect or optimal ternary code of length 5.

88

Chapter 7

Conclusion and Future Work

In this thesis, we have studied three different approaches of constructing

good deletion correcting codes. The first one is a construction from design

theory. However, designs only produce n - 2 deletion correcting codes over a

large alphabet, which is very restrictive and not generally useful in the real

world. Thus we chose not to pursue this approach. The second approach is

the S codes. We constructed the codes and proved that they are I-deletion

correcting codes. But the size of the codes are extremely small.

In this case, we turned to the third approach: extending the T codes. The

greedy algorithm and the backtracking algorithm are two trivial ways to ex­

tend the size. The greedy extension is usually as large as the backtracking

extension, but uses much less time. Besides these two algorithms, we manage

to extend the code by some properties and hypotheses, which are discovered

during our research. We show that we can never expect the T codes to be

CHAPTER 7. CONCLUSION AND FUTURE WORK

perfect or optimal. And we guess the Ts codes are the largest among the T

codes. This strategy extends only one codeword 2222202211 right now, but

this word can be added into any Ts code iflength is longer than 10. And we

believe, that more words can be extended as the length grows longer. Only

a small part of the hypotheses can be proved at the moment. The rest of

them have to be remained as future work.

For future work, the first thing that can be done is separating the back­

tracking program into multiple smaller tasks. The whole search space can be

separated into subspaces and each of the subspaces can be searched simul­

taneously. The bottle neck of this process is that how to partition the tasks

evenly to different programs. Before search, we cannot predict which branch

of a tree has the shortest depth.

The second thing is proving the hypotheses, which is not easy. In the pre­

vious chapter, we have already pointed out that the hypotheses have a close

relationship with Fermat's little theorem. So, studying the Number Theory

will be a good start.

The third one is continuing the study of extendable errors. Searching more

Ts codes will produce more extendable errors, and allow us to construct more

extendable codewords.

The last one is studying the codes for other alphabets. All of my studies

are focused on ternary, so some other alphabets are worth to try, especially

when q is a power of 2. Some interesting properties or special cases may be

discovered.

90

Bibliography

[1] R.J.R. Abel and F.E. Bennett, "Existence of directed BIBDs with block

size 7 and related perfect 5-deletion-correcting codes of length 7", De­

signs, Codes and Cryptography, vol. 57, pp. 383-397, 2010.

[2] K.A.S. Abdel-Ghaffar and H.C. Ferreira, "Systematic Encoding of the

Varshamov-Tenengol'ts Codes and the Constantin-Rao Codes", IEEE

'ITansactions on Information Theory, vol.44, pp. 340-345, 1998.

[3] S. Baker, R. Flack and S. Houghten, "Optimal Variable-Length

Insertion-Deletion Correcting Codes and Edit Metric Codes", Congres­

sus Numerantium 186(2007), pp. 65-80, 2007.

[4] P.A.H. Bours, "On the Construction of Perfect Deletion-Correcting

Codes using Design Theory", Designs, Codes and Cryptography, 1995

Kluwer Academic Publishers, vol. 6, pp. 5-20, 1995.

[5] V.1. Levenshtein, "Binary codes capable of correcting spurious insertions

and deletions of ones", Problemy Peredachi Informatsii, vol. 1{No. 1),

pp. 12-25, 1965(in Russian).

BIBLIOGRAPHY

[6] V.L Levenshtein, "On perfect codes in deletion and insertion metric",

Discrete Mathematics and Applications, vo12, pp. 241-258, 1992.

[7] H. Mercier, V.K. Bhargava and V. Tarokh, "A Survey of Error­

Correcting Codes for Channels With Symbol Synchronization Errors",

IEEE Communications surveys & Tutorials, vol. 12, pp. 87-96, 2010.

[8] M. Mitzenmacher, "A survey of results for deletion channels and related

synchronization channels", Probability Surveys, vol. 6, pp. 1-33, 2009.

[9] N.J.A. Sloane, "On Single-Deletion-Correcting Codes", Codes and De­

signs, Ohio State University, pp. 273-296, 2002.

[10] G. Tenengolts, Nonbinary Codes, "Correcting Single Deletion or Inser­

tion", IEEE Transactions on Information Theory, vol. IT-30, pp. 766-

769,1984.

[11] RR Varshamov and G.M. Tenegolz, "One asymmetrical error correct­

ing codes" , Automatics and Telemechanics, vol. 26, pp. 288-292, 1965(in

Russian).

[12] J. Wang, "Some combinatorial constructions for optimal perfect

deletion-correcting codes", Designs, Codes and Cryptography, vol. 48,

pp. 331-347, 2008.

[13] J. Wang and L. Ji, "Existence of T*(3,4,v)-Codes", The Journal of Com­

binatorial Designs, vol. 13, pp. 42-53, 2005.

92

BIBLIOGRAPHY

[14] J. Wang and J. Yin, "Constructions for Perfect 5-Deletion-Correcting

Codes of Length 7", IEEE Transactions on Information Theory, voL52,

pp. 3676-3685, 2006.

[15] J. Yin, "A Combinatorial Construction for Perfect Deletion-Correcting

Codes", Designs, Codes and Cryptography, vol 23, pp. 99-110, 2001.

93

