2,165 research outputs found

    An asymptotic existence result on compressed sensing matrices

    Get PDF
    For any rational number hh and all sufficiently large nn we give a deterministic construction for an n×hnn\times \lfloor hn\rfloor compressed sensing matrix with (1,t)(\ell_1,t)-recoverability where t=O(n)t=O(\sqrt{n}). Our method uses pairwise balanced designs and complex Hadamard matrices in the construction of ϵ\epsilon-equiangular frames, which we introduce as a generalisation of equiangular tight frames. The method is general and produces good compressed sensing matrices from any appropriately chosen pairwise balanced design. The (1,t)(\ell_1,t)-recoverability performance is specified as a simple function of the parameters of the design. To obtain our asymptotic existence result we prove new results on the existence of pairwise balanced designs in which the numbers of blocks of each size are specified.Comment: 15 pages, no figures. Minor improvements and updates in February 201

    Mutually orthogonal latin squares with large holes

    Full text link
    Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears exactly once. This definition extends naturally to `incomplete' latin squares each having a hole on the same rows, columns, and symbols. If an incomplete latin square of order nn has a hole of order mm, then it is an easy observation that n2mn \ge 2m. More generally, if a set of tt incomplete mutually orthogonal latin squares of order nn have a common hole of order mm, then n(t+1)mn \ge (t+1)m. In this article, we prove such sets of incomplete squares exist for all n,m0n,m \gg 0 satisfying n8(t+1)2mn \ge 8(t+1)^2 m

    Completion and deficiency problems

    Full text link
    Given a partial Steiner triple system (STS) of order nn, what is the order of the smallest complete STS it can be embedded into? The study of this question goes back more than 40 years. In this paper we answer it for relatively sparse STSs, showing that given a partial STS of order nn with at most rεn2r \le \varepsilon n^2 triples, it can always be embedded into a complete STS of order n+O(r)n+O(\sqrt{r}), which is asymptotically optimal. We also obtain similar results for completions of Latin squares and other designs. This suggests a new, natural class of questions, called deficiency problems. Given a global spanning property P\mathcal{P} and a graph GG, we define the deficiency of the graph GG with respect to the property P\mathcal{P} to be the smallest positive integer tt such that the join GKtG\ast K_t has property P\mathcal{P}. To illustrate this concept we consider deficiency versions of some well-studied properties, such as having a KkK_k-decomposition, Hamiltonicity, having a triangle-factor and having a perfect matching in hypergraphs. The main goal of this paper is to propose a systematic study of these problems; thus several future research directions are also given

    Existence of perfect Mendelsohn designs with k=5 and λ>1

    Get PDF
    AbstractLet υ, k, and λ be positive integers. A (υ, k, λ)-Mendelsohn design (briefly (υ, k, λ)-MD) is a pair (X, B) where X is a υ-set (of points) and B is a collection of cyclically ordered k-subsets of X (called blocks) such that every ordered pair of points of X are consecutive in exactly λ blocks of B. A set of k distinct elements {a1, a2,…, ak} is said to be cyclically ordered by a1<a2<⋯<ak<a1 and the pair ai, ai+t is said to be t-apart in cyclic k-tuple (a1, a2,…, ak) where i+t is taken modulo k. It for all t=1,2,…, k-1, every ordered pair of points of X is t-apart in exactly λ blocks of B, then the (υ, k, λ)-MD is called a perfect design and is denoted briefly by (υ, k, λ)-PMD. In this paper, we shall be concerned mainly with the case where k=5 and λ>1. It will be shown that the necessary condition for the existence of a (υ, 5, λ)-PMD, namely, λv(υ-1)≡0 (mod 5), is also sufficient for λ>1 with the possible exception of pairs (υ, λ) where λ=5 and υ=18 and 28
    corecore